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Abstract 

Robust Adaptive Dynamic Programming for Continuous-Time 

Linear and Nonlinear Systems 

By 

Yu Jiang 

Advisor: Zhong-Ping Jiang 

Submitted in Partial Fulfillment of the Requirements for the Degree of 

Doctor of Philosophy (Electrical Engineering) 

May 2014 

 

The field of adaptive dynamic programming and its applications to control 

engineering problems has undergone rapid progress over the past few 

years. Recently, a new theory called Robust Adaptive Dynamic Programming 

(for short, RADP) has been developed for the design of robust optimal 

controllers for linear and nonlinear systems subject to both parametric and 

dynamic uncertainties. This dissertation integrates our recent contributions 

to the development of the theory of RADP and illustrates its potential 

applications in both engineering and biological systems.  

In order to develop the RADP framework, our attention is first focused on the 

development of an ADP-based online learning method for continuous-time 

(CT) linear systems with completely unknown system.  This problem is 

challenging due to the different structures between CT and discrete-time (DT) 

algebraic Riccati equations (AREs), and therefore methods developed for DT 

ADP cannot be directly applied in the CT setting.  This obstacle is overcome 

in our work by taking advantages of exploration noise. The methodology is 
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immediately extended to deal with CT affine nonlinear systems, via neural-

networks-based approximation of the Hamilton-Jacobi-Bellman (HJB) 

equation, of which the solution is extremely difficult to be obtained 

analytically.  To achieve global stabilization, for the first time we propose an 

idea of global ADP (or GADP), in which we relax the problem of solving the 

Hamilton-Jacobi-Bellman (HJB) equation to an optimization problem, of 

which a suboptimal solution is obtained via a sum-of-squares-program-based 

policy iteration method. The resultant control policy is globally stabilizing, 

instead of semi-globally or locally stabilizing. 

Then, we develop RADP aimed at computing globally stabilizing and 

suboptimal control policies in the presence of dynamic uncertainties. A key 

strategy is to integrate ADP theory with techniques in modern nonlinear 

control with a unique objective of filling a gap in the past literature of ADP 

without taking into account dynamic uncertainties. The development of this 

framework contains two major steps. First, we study an RADP method for 

partially linear systems (i.e., linear systems with nonlinear dynamic 

uncertainties) and weakly nonlinear large-scale systems. Global stabilization 

of the systems can be achieved by selecting performance indices with 

appropriate weights for the nominal system. Second, we extend the RADP 

framework for affine nonlinear systems with nonlinear dynamic uncertainties. 

To achieve robust stabilization, we resort to tools from nonlinear control 

theory, such as gain assignment and the ISS nonlinear small-gain theorem.  

From the perspective of RADP, we derive a novel computational mechanism 

for sensorimotor control. Sharing some essential features of reinforcement 

learning, which was originally observed from mammals, the RADP model for 

sensorimotor control suggests that, instead of identifying the system 

dynamics of both the motor system and the environment, the central nervous 

system (CNS) computes iteratively a robust optimal control policy using the 

real-time sensory data. By comparing our numerical results with 
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experimentally observed data, we show that the proposed model can 

reproduce movement trajectories which are consistent with experimental 

observations. In addition, the RADP theory provides a unified framework 

that connects optimality and robustness properties in the sensorimotor 

system. Therefore, we argue that the CNS may use RADP-like learning 

strategies to coordinate movements and to achieve successful adaptation in 

the presence of static and/or dynamic uncertainties.  
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Chapter 1

Introduction

1.1 From RL to RADP

1.1.1 RL, DP, and ADP

Reinforcement learning (RL) [155] is originally observed from the learning behavior in

mammals. Generally speaking, RL concerns how an agent should modify its actions

to better interact with the unknown environment such that a long term goal can

be achieved (see Figure 1.1). The definition of RL can be quite general. Indeed,

the well-known trial-and-error method can be considered as one simple scheme of

reinforcement learning, because trial-and-error, together with delayed reward [181],

are two important features of RL [155]. In the seminal book by Sutton and Barto

[155], the RL problem is referred to as how to map situations to actions so as to

minimize a numerical reward signal. As an important branch in machine learning

theory, RL has been brought to the computer science and control science literature as

a way to study artificial intelligence in the 1960s [115, 117, 176]. Since then, numerous

contributions to RL, from a control perspective, have been made (see, for example,

[5, 154, 181, 102, 103, 174, 88]).

On the other hand, Dynamic programming (DP) [8] offers a theoretical way to

1



Cost 

Environment 

Agent 

Action 

Figure 1.1: Illustration of RL. The agent gives an action to the unknown environment,
and evaluates the related cost, based on which the agent can further improve the
action to reduce the cost.

solve multistage decision making problems. However, it suffers from the inherent

computational complexity, also known as the curse of dimensionality [127]. Therefore,

the need for approximative methods has been recognized as early as in the late 1950s

[7]. In [58], an iterative technique called policy iteration (PI) was devised by Howard

for Markov decision processes. Also, Howard called the iterative method developed

by Bellman [8, 7] as value iteration (VI). Computing the optimal solution through

successive approximations, PI is closely related to learning methods. In 1968, Werbos

pointed out that PI can be employed to perform RL [185]. Starting from then, many

real-time RL methods for finding online optimal control policies have emerged and

they are broadly called approximate/adaptive dynamic programming (ADP) [102,

100, 177, 186, 189, 190, 191, 193, 127, 144, 188, 202], or neurodynamic programming

[10]. The main feature of ADP [186, 187] is that it employs idea from reinforcement

learning [155] to achieve online approximation of the cost function, without using the

knowledge of the system dynamics.

2



1.1.2 The development of ADP

The development of ADP theory consists of three phases. In the first phase, ADP was

extensively investigated within the communities of computer science and operations

research. Two basic algorithms, policy iteration [58] and value iteration [8], are

usually employed. In [154], Sutton introduced the temporal difference method. In

1989, Watkins proposed the well-known Q-learning method in his PhD thesis [181].

Q-learning shares similar features with the action-dependent HDP scheme proposed

by Werbos in [189]. Other related research work under a discrete time and discrete

state-space Markov decision process framework can be found in [11, 10, 18, 23, 127,

130, 156, 155] and references therein. In the second phase, stability is brought into the

context of ADP while real-time control problems are studied for dynamic systems.

To the best of the author’s knowledge, Lewis is the first who contributes to the

integration of stability theory and ADP theory [102]. An essential advantage of ADP

theory is that an optimal control policy can be obtained via a recursive numerical

algorithm using online information without solving the HJB equation (for nonlinear

systems) and the algebraic Riccati equation (ARE) (for linear systems), even when

the system dynamics are not precisely known. Optimal feedback control designs for

linear and nonlinear dynamic systems have been proposed by several researchers over

the past few years; see, e.g., [12, 34, 118, 122, 167, 173, 196, 203]. While most of the

previous work on ADP theory was devoted to discrete-time (DT) systems (see [100]

and references therein), there has been relatively less research for the continuous-time

(CT) counterpart. This is mainly because ADP is considerably more difficult for CT

systems than for DT systems. Indeed, many results developed for DT systems [107]

cannot be extended straightforwardly to CT systems. Nonetheless, early attempts

were made to apply Q-learning for CT systems via discretization technique [4, 35].

However, convergence and stability analysis of these schemes are challenging. In [122],

Murray et. al proposed an implementation method which requires the measurements

3



of the derivatives of the state variables. As said previously, Lewis and his co-worker

proposed the first solution to stability analysis and convergence proofs for ADP-based

control systems by means of LQR theory [173]. A synchronous policy iteration scheme

was also presented in [166]. For CT linear systems, the partial knowledge of the system

dynamics (i.e., the input matrix) must be precisely known. This restriction has been

completely removed in [68]. A nonlinear variant of this method can be found in [75].

The third phase in the development of ADP theory is related to extensions of

previous ADP results to nonlinear uncertain systems. Neural networks and game

theory are utilized to address the presence of uncertainty and nonlinearity in control

systems. See, e.g. [51, 167, 168, 203, 100, 198, 204, 183]. An implicit assumption in

these papers is that the system order is known and that the uncertainty is static, not

dynamic. The presence of dynamic uncertainty has not been systematically addressed

in the literature of ADP. By dynamic uncertainty, we refer to the mismatch between

the nominal model and the real plant when the order of the nominal model is lower

than the order of the real system. A closely related topic of research is how to

account for the effect of unseen variables [188]. It is quite common that the full-state

information is often missing in many engineering applications and only the output

measurement or partial-state measurements are available. Adaptation of the existing

ADP theory to this practical scenario is important yet non-trivial. Neural networks

are sought for addressing the state estimation problem [37, 87]. However, the stability

analysis of the estimator/controller augmented system is by no means easy, because

the total system is highly interconnected. The configuration of a standard ADP-based

control system is shown in Figure 1.2.

Our recent work [67, 73, 70, 67, 69] on the development of robust ADP (for short,

RADP) theory is exactly targeted at addressing these challenges.
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Figure 1.2: Configuration of an ADP-based control system. The Critic evaluates
online the control policy, and the Actor implements the improved control policy.

1.1.3 What is RADP?

RADP is developed to address the presence of dynamic uncertainty in linear and

nonlinear dynamical systems. See Figure 1.3 for an illustration. There are several

reasons for which we pursue a new framework for RADP. First and foremost, it is

well-known that building an exact mathematical model for physical systems often

is a hard task. Also, even if the exact mathematical model can be obtained for

some particular engineering and biological applications, simplified models are often

more preferable for system analysis and control synthesis than the original complex

system model. While we refer the mismatch between the simplified model and the

original system to as dynamic uncertainty here, the engineering literature often uses

the term of unmodeled dynamics instead. Secondly, the observation errors may often

be captured by dynamic uncertainty. From the literature of modern nonlinear control

[95, 80, 82], it is known that the presence of dynamic uncertainty makes the feedback

control problem extremely challenging in the context of nonlinear systems. In order to

broaden the application scope of ADP theory in the presence of dynamic uncertainty,
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Figure 1.3: RADP with dynamic uncertainty, different from classical ADP architec-
ture, a new component, known as dynamic uncertainty, is taken into consideration.

our strategy is to integrate tools from nonlinear control theory, such as Lyapunov

designs, input-to-state stability theory [150], and nonlinear small-gain techniques [83].

This way RADP becomes applicable to wide classes of uncertain dynamic systems

with incomplete state information and unknown system order/dynamics.

Additionally, RADP can be applied to large-scale dynamic systems as shown in

our recent paper [70]. By integrating a simple version of the cyclic-small-gain theorem

[109], asymptotic stability can be achieved by assigning appropriate weighting ma-

trices for each subsystem. Further, certain suboptimality property can be obtained.

Because of several emerging applications of practical importance such as smart elec-

tric grid, intelligent transportation systems and groups of mobile autonomous agents,

this topic deserves further investigations from a RADP point of view. The existence

of unknown parameters and/or dynamic uncertainties, and the limited information of

state variables, give rise to challenges for the decentralized or distributed controller

design of large-scale systems.
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1.2 Contributions of this dissertation

Here we outline the key contributions of the dissertation as follows.

• We, for the first time, develop ADP methods for CT systems with completely

unknown dynamics.

– By taking advantages of the exploration noise, we remove the assumption in

the past literature of ADP where partial knowledge of the system dynamics

must be known [68].

– We extend the method to affine nonlinear systems and rigorously show its

stability and convergence properties [75].

– We introduce sum-of-squares-based relaxation method into ADP theory to

achieve global stabilization and suboptimal control of uncertain nonlinear

systems via online learning [71].

• We propose the new theory of RADP, which fills a gap of ADP in the past liter-

ature where dynamic uncertainties or unmodeled dynamics are not addressed.

– Inspired by the small-gain theorem [83], for partially linear systems, we

give conditions on the design of the performance index to achieve robust

stability [69].

– We extend this technique to a class of large-scale systems [70].

– By integration with tools from nonlinear control theory, e.g., gain-assignment

[129], and the Lyapunov-based small-gain condition [81], we redesign the

approximated optimal controller to achieve robust stabilization of nonlin-

ear system with dynamic uncertainties [75].

• We have applied the RADP theory to study both engineering and reverse-

engineering problems.
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– The RADP theory is used to study the robust optimal control of multima-

chine power systems [70, 73].

– Observing good consistency between experimental data [22, 41, 142] and

our simulation results, we suggest that biological systems may use RADP-

like schemes to interact with uncertain environment [74, 76].
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Chapter 2

ADP for linear systems with

completely unknown dynamics

The adaptive controller design for unknown linear systems has been intensively stud-

ied in the past literature [60], [113], [158]. A conventional way to design an adaptive

optimal control law can be pursued by identifying the system parameters first and

then solving the related algebraic Riccati equation. However, adaptive systems de-

signed this way are known to respond slowly to parameter variations from the plant.

On the other hand, approximate/adaptive dynamic programming (ADP) [186]

theories have been broadly applied for solving optimal control problems for uncertain

systems in recent years (see, for example, [102, 177, 38, 2, 12, 34, 196, 66, 101, 173,

203, 192]). Among all the different ADP approaches, for discrete-time (DT) systems,

the action-dependent heuristic dynamic programming (ADHDP) [189], or Q-learning

[181], is an online iterative scheme that does not depend on the model to be controlled,

and it has found applications in many engineering disciplines [1, 196, 101, 184].

Nevertheless, due to the different structures of the algebraic Riccati equations

between DT and continuous-time (CT) systems, results developed for the DT setting

cannot be directly applied for solving CT problems. Although some early attempts
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have been made in [4, 122, 173], a common feature of all the existing ADP-based

results is that partial knowledge of the system dynamics is assumed to be exactly

known in the setting of CT systems.

The primary objective of this chapter is to remove this assumption on partial

knowledge of the system dynamics, and thus to develop a truly knowledge-free AD-

P algorithm. More specifically, we propose a novel computational adaptive optimal

control methodology that employs the approximate/adaptive dynamic programming

technique to iteratively solve the algebraic Riccati equation using the online infor-

mation of state and input, without requiring the a priori knowledge of the system

matrices. In addition, all iterations can be conducted by using repeatedly the same s-

tate and input information on some fixed time intervals. It should be noticed that our

approach serves as a fundamental computational tool to study ADP related problems

for CT systems in the remainder of this dissertation.

This Chapter is organized as follows: In Section 2.1, we briefly introduce a policy

iteration technique for solving standard CT linear systems. In Section 2.2, we de-

velop our computational adaptive optimal control method and show its convergence.

A practical online algorithm is provided. In Section 2.3, we apply the proposed ap-

proach to the optimal controller design problem of a turbocharged diesel engine with

exhaust gas recirculation. Concluding remarks as well as potential future extensions

are contained in Section 2.4.

2.1 Problem formulation and preliminaries

Consider a CT linear system described by

ẋ = Ax+Bu (2.1)
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where x ∈ Rn is the system state fully available for feedback control design; u ∈ Rm

is the control input; A ∈ Rn×n and B ∈ Rn×m are unknown constant matrices. In

addition, the system is assumed to be stabilizable.

Recall the LQR design mentioned in Section 9.1.1. The design objective is to find

a linear optimal control law in the form of

u = −Kx (2.2)

which minimizes the following performance index

J =

∫ ∞

0

(xTQx+ uTRu)dt (2.3)

where Q = QT ≥ 0, R = RT > 0, with (A,Q1/2) observable.

By [99], solution to this problem can be found by solving the following well-known

algebraic Riccati equation (ARE)

ATP + PA+Q− PBR−1BTP = 0, (2.4)

which has a unique symmetric positive definite solution P ∗. Then, the optimal feed-

back gain matrix K∗ in (2.2) is thus determined by

K∗ = R−1BTP ∗. (2.5)

Since (2.4) is nonlinear in P , it is usually difficult to directly solve P ∗ from (2.4),

especially for large-size matrices. Nevertheless, many efficient algorithms have been

developed to numerically approximate the solution of (2.4). One of such algorithms

was developed in [89], and is introduced in the following:

Theorem 2.1.1 ([89]). Let K0 ∈ Rm×n be any stabilizing feedback gain matrix, and
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let Pk be the real symmetric positive definite solution of the Lyapunov equation

(A−BKk)
T Pk + Pk (A−BKk) +Q+KT

k RKk = 0 (2.6)

where Kk, with k = 1, 2, · · · , are defined recursively by:

Kk = R−1BTPk−1. (2.7)

Then, the following properties hold:

1. A−BKk is Hurwitz,

2. P ∗ ≤ Pk+1 ≤ Pk,

3. lim
k→∞

Kk = K∗, lim
k→∞

Pk = P ∗.

In [89], by iteratively solving the Lyapunov equation (2.6), which is linear in Pk,

and updating Kk by (2.7), solution to the nonlinear equation (2.4) is numerically

approximated.

For the purpose of solving (2.6) without the knowledge of A, in [173], (2.6) was

implemented online by

xT (t)Pkx(t)− xT (t+ δt)Pkx(t+ δt) =

∫ t+δt

t

(
xTQx+ uTkRuk

)
dτ (2.8)

where uk = −Kkx is the control input of the system on the time interval [t, t+ δt].

Since both x and uk can be measured online, a real symmetric solution Pk can be

uniquely determined under certain persistent excitation (PE) condition [173]. Howev-

er, as we can see from (2.7), the exact knowledge of system matrix B is still required

for the iterations. Also, to guarantee the PE condition, the state may need to be reset

at each iteration step, but this may cause technical problems for stability analysis of

the closed loop system [173]. An alternative way is to add exploration noise [19],
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[167], [1], [196] such that uk = −Kkx+ e, with e the exploration noise, is used as the

true control input in (2.8). As a result, Pk solved from (2.8) and the one solved from

(2.6) are not exactly the same. In addition, after each time the control policy is up-

dated, information of the state and input must be re-collected for the next iteration.

This may slow down the learning process, especially for high-dimensional systems.

2.2 ADP-based online learning with completely un-

known dynamics

In this section, we will present our new online learning strategy that does not rely on

A nor B.

To this end, we rewrite the original system (2.1) as

ẋ = Akx+B(Kkx+ u) (2.9)

where Ak = A−BKk.

Then, along the solutions of (2.9), by (2.6) and (2.7) it follows that

x(t+ δt)TPkx(t+ δt)− x(t)TPkx(t)

=

∫ t+δt

t

[
xT (ATkPk + PkAk)x+ 2(u+Kkx)TBTPkx

]
dτ (2.10)

= −
∫ t+δt

t

xTQkx dτ + 2

∫ t+δt

t

(u+Kkx)TRKk+1x dτ

where Qk = Q+KT
k RKk.

Remark 2.2.1. Notice that in (2.10), the term xT (ATkPk + PkAk)x depending on

the unknown matrices A and B is replaced by −xTQkx, which can be obtained by

measuring the state online. Also, the term BTPk involving B is replaced by RKk+1,

in which Kk+1 is treated as another unknown matrix to be solved together with Pk.
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Therefore, (2.10) plays an important role in separating the system dynamics from the

iterative process. As a result, the requirement of the system matrices in (2.6) and

(2.7) can be replaced by the state and input information measured online.

Remark 2.2.2. It is also noteworthy that in (2.10) we always have exact equality

if Pk, Kk+1 satisfy (2.6), (2.7), and x is the solution of system (2.9) with arbitrary

control input u. This fact enables us to employ u = −K0x+ e, with e the exploration

noise, as the input signal for learning, without affecting the convergence of the learning

process.

Next, we show that given a stabilizing Kk, a pair of matrices (Pk, Kk+1), with

Pk = P T
k > 0, satisfying (2.6) and (2.7) can be uniquely determined without knowing

A or B , under certain condition. To this end, we define the following two operators:

ν(P ) : Rn×n → R
1
2
n(n+1), and µ(x) : Rn → R

1
2
n(n+1)

such that

ν(P ) = [p11, 2p12, · · · , 2p1n, p22, 2p23, · · · , 2pn−1,n, pnn]T ,

µ(x) = [x2
1, x1x2, · · · , x1xn, x

2
2, x2x3, · · · , xn−1xn, x

2
n]T .

In addition, by Kronecker product representation, we have

xTQkx =
(
xT ⊗ xT

)
vec(Qk),

and

(u+Kkx)TRKk+1x

=
[
(xT ⊗ xT )(In ⊗KT

k R) + (xT ⊗ uT ) (In ⊗R)
]

vec(Kk+1).
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Further, for positive integer l, we define matrices δxx ∈ Rl× 1
2
n(n+1), Ixx ∈ Rl×n2

,

Ixu ∈ Rl×mn, such that

δxx =

[
µ(x(t1))− µ(x(t0)), µ(x(t2))− µ(x(t1)), · · · , µ(x(tl))− µ(x(tl−1))

]T
,

Ixx =

[ ∫ t1
t0
x⊗ x dτ,

∫ t2
t1
x⊗ x dτ, · · · ,

∫ tl
tl−1

x⊗ x dτ
]T
,

Ixu =

[ ∫ t1
t0
x⊗ u dτ,

∫ t2
t1
x⊗ u dτ, · · · ,

∫ tl
tl−1

x⊗ u dτ
]T
,

where 0 ≤ t0 < t1 < · · · < tl.

Then, for any given stabilizing gain matrix Kk, (2.10) implies the following matrix

form of linear equations

Θk




ν(Pk)

vec (Kk+1)


 = Ξk (2.11)

where Θk ∈ Rl×[ 1
2
n(n+1)+mn] and Ξk ∈ Rl are defined as:

Θk =
[
δxx,−2Ixx(In ⊗KT

k R)− 2Ixu(In ⊗R)
]
,

Ξk = −Ixx vec(Qk).

Notice that if Θk has full column rank, (2.11) can be directly solved as follows:




ν(Pk)

vec (Kk+1)


 = (ΘT

kΘk)
−1ΘT

kΞk. (2.12)

Now, we are ready to give the following computational adaptive optimal control

algorithm for practical online implementation. A flowchart of Algorithm 2.2.1 is

shown in Figure 2.1.

Remark 2.2.3. Computing the matrices Ixx and Ixu carries the main burden in
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Algorithm 2.2.1 ADP algorithm

1: Employ u = −K0x + e as the input on the time interval [t0, tl], where K0 is
stabilizing and e is the exploration noise. Compute δxx, Ixx and Ixu until the rank
condition in (2.13) below is satisfied. Let k = 0.

2: Solve Pk and Kk+1 from (2.12).
3: Let k ← k + 1, and repeat Step 2 until ‖Pk − Pk−1‖ ≤ ε for k ≥ 1, where the

constant ε > 0 is a predefined small threshold.
4: Use u = −Kkx as the approximated optimal control policy.

Start
Initialization: k = 0
and K0 is stabilizing.

Let u = −K0x + e, t ∈
[t0, tl], and compute
δxx, Ixx, and Ixu.

Solve Pk and Kk+1 from[
P̂k

vec(Kk+1)

]
=
(
ΘT

k Θk

)−1
ΘT

k Ξk.

‖Pk−Pk−1‖ ≤
ε for k ≥ 1

Use u = −Kkx as
the control input.

Stop

k ← k+ 1

Yes

No

1Figure 2.1: Flowchart of Algorithm 2.2.1.

performing Algorithm 2.2.1. The two matrices can be implemented using 1
2
n(n+ 1) +

mn integrators in the learning system to collect information of the state and the input.

Remark 2.2.4. In practice, numerical error may occur when computing Ixx and Ixu.

As a result, the solution of (2.11) may not exist. In that case, the solution of (2.12)

can be viewed as the least squares solution of (2.11).

Next, we show that the convergence of Algorithm 2.2.1 can be guaranteed under

certain condition.
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Lemma 2.2.1. If there exists an integer l0 > 0, such that, for all l ≥ l0,

rank

([
Ixx, Ixu

])
=
n(n+ 1)

2
+mn, (2.13)

then Θk has full column rank for all k ∈ Z+.

Proof: It amounts to show that the following linear equation

ΘkX = 0 (2.14)

has only the trivial solution X = 0.

To this end, we prove by contradiction. AssumeX =

[
Y T
v ZT

v

]T
∈ R 1

2
n(n+1)+mn

is a nonzero solution of (2.14), where Yv ∈ R 1
2
n(n+1) and Zv ∈ Rmn. Then, a symmetric

matrix Y ∈ Rn×n and a matrix Z ∈ Rm×n can be uniquely determined, such that

ν(Y ) = Yv and vec(Z) = Zv.

By (2.10), we have

ΘkX = Ixxvec(M) + 2Ixuvec(N) (2.15)

where

M = ATk Y + Y Ak +KT
k (BTY −RZ) + (Y B − ZTR)Kk, (2.16)

N = BTY −RZ. (2.17)

Notice that since M is symmetric, we have

Ixxvec(M) = Ix̄ν(M) (2.18)
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where Ix̄ ∈ Rl× 1
2
n(n+1) is defined as:

Ix =

[ ∫ t1
t0
µ(x)dτ,

∫ t2
t1
µ(x)dτ, · · · ,

∫ tl
tl−1

µ(x)dτ

]T
. (2.19)

Then, (2.14) and (2.15) imply the following matrix form of linear equations

[
Ix, 2Ixu

]



ν(M)

vec(N)


 = 0. (2.20)

Under the rank condition in (2.13), we know

[
Ix, 2Ixu

]
has full column rank.

Therefore, the only solution to (2.20) is ν(M) = 0 and vec(N) = 0. As a result, we

have M = 0 and N = 0.

Now, by (2.17) we know Z = R−1BTY , and (2.16) is reduced to the following

Lyapunov equation

ATk Y + Y Ak = 0. (2.21)

Since Ak is Hurwitz for all k ∈ Z+, the only solution to (2.21) is Y = 0. Finally, by

(2.17) we have Z = 0.

In summary, we have X = 0. But it contradicts with the assumption that X 6= 0.

Therefore, Θk must have full column rank for all k ∈ Z+. The proof is complete.

Theorem 2.2.1. Starting from a stabilizing K0 ∈ Rm×n, when the condition of Lem-

ma 2.2.1 is satisfied, the sequences {Pi}∞i=0 and {Kj}∞j=1 obtained from solving (2.12)

converge to the optimal values P ∗ and K∗, respectively.

Proof: Given a stabilizing feedback gain matrix Kk, if Pk = P T
k is the solution of

(2.6), Kk+1 is uniquely determined by Kk+1 = R−1BTPk. By (2.10), we know that

Pk and Kk+1 satisfy (2.12). On the other hand, let P = P T ∈ Rn×n and K ∈ Rm×n,
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such that

Θk




ν(P )

vec(K)


 = Ξk.

Then, we immediately have ν(P ) = ν(Pk) and vec(K) = vec(Kk+1). By Lemma

2.2.1, P = P T and K are unique. In addition, by the definitions of ν(P ) and vec(K),

Pk = P and Kk+1 = K are uniquely determined.

Therefore, the policy iteration (2.12) is equivalent to (2.6) and (2.7). By Theorem

2.1.1, the convergence is thus proved.

Remark 2.2.5. It can be seen that Algorithm 2.2.1 contains two separated phases:

First, an initial stabilizing control policy with exploration noise is applied and the

online information is recorded in matrices δxx, Ixx, and Ixu until the rank condition

in (2.13) is satisfied. Second, without requiring additional system information, the

matrices δxx, Ixx, and Ixu are repeatedly used to implement the iterative process. A

sequence of controllers, that converges to the optimal control policy, can be obtained.

Remark 2.2.6. The choice of exploration noise is not a trivial task for general rein-

forcement learning problems and other related machine learning problems, especially

for high dimensional systems. In solving practical problems, several types of explo-

ration noise have been adopted, such as random noise [1], [196], exponentially de-

creasing probing noise [167]. For the simulations in the next section, we will use the

sum of sinusoidal signals with different frequencies, as in [69].

Remark 2.2.7. In some sense, our approach is related to the ADHDP [189], or Q-

learning [181] method for DT systems. Indeed, it can be viewed that we solve the

following matrix Hk at each iteration step

Hk =



H11,k H12,k

H21,k H22,k


 =




Pk PkB

BTPk R


 . (2.22)
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Once this matrix is obtained, the control policy can be updated by Kk+1 = H−1
22,kH21,k.

The DT version of the Hk matrix can be found in [19] and [102].

2.3 Application to a turbocharged diesel engine

In this section, we study the controller design for a turbocharged diesel engine with

exhaust gas recirculation [84]. The open loop model is a six-th order CT linear system.

The system matrices A and B are directly taken from [84] and shown as follows:

A =




−0.4125 −0.0248 0.0741 0.0089 0 0

101.5873 −7.2651 2.7608 2.8068 0 0

0.0704 0.0085 −0.0741 −0.0089 0 0.0200

0.0878 0.2672 0 −0.3674 0.0044 0.3962

−1.8414 0.0990 0 0 −0.0343 −0.0330

0 0 0 −359.0000 187.5364 −87.0316




,

B =



−0.0042 −1.0360 0.0042 0.1261 0 0

0.0064 1.5849 0 0 −0.0168 0




T

.

In order to illustrate the efficiency of the proposed computational adaptive optimal

control strategy, the precise knowledge of A and B is not used in the design of optimal

controllers. Since the physical system is already stable, the initial stabilizing feedback

gain can be set as K0 = 0.

The weighting matrices are selected to be

Q = diag

(
1, 1, 0.1, 0.1, 0.1, 0.1

)
, R = I2.

In the simulation, the initial values for the state variables are randomly selected

around the origin. From t = 0s to t = 2s, the following exploration noise is used as
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Figure 2.2: Trajectory of the Euclidean norm of the state variables during the simu-
lation.

the system input

e = 100
100∑

i=1

sin(ωit) (2.23)

where ωi, with i = 1, · · · , 100, are randomly selected from [−500, 500].

State and input information is collected over each interval of 0.01s. The policy

iteration started at t = 2s, and convergence is attained after 16 iterations, when the

stopping criterion ‖Pk − Pk−1‖ ≤ 0.03 is satisfied. The formulated controller is used

as the actual control input to the system starting from t = 2s to the end of the

simulation. The trajectory of the Euclidean norm of all the state variables is shown

in Figure 2.2. The system output variables y1 = 3.6x6 and y2 = x4, denoting the mass

air flow (MAF) and the intake manifold absolute pressure (MAP) [84], are plotted in

Figure 2.3.
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Figure 2.3: Trajectories of the output variables from t = 0s to t = 10s.

The proposed algorithm gives the cost and the feedback gain matrices as shown

below:

P15 =




127.5331 0.5415 16.8284 1.8305 1.3966 0.0117

0.5415 0.0675 0.0378 0.0293 0.0440 0.0001

16.8284 0.0378 18.8105 −0.3317 4.1648 0.0012

1.8305 0.0293 −0.3317 0.5041 −0.1193 −0.0001

1.3966 0.0440 4.1648 −0.1193 3.3985 0.0004

0.0117 0.0001 0.0012 −0.0001 0.0004 0.0006




,

K15 =



−0.7952 −0.0684 −0.0725 0.0242 −0.0488 −0.0002

1.6511 0.1098 0.0975 0.0601 0.0212 0.0002


 .

By solving directly the algebraic Riccati equation (2.4), we obtain the optimal
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learning process.
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solutions:

P ∗ =




127.5325 0.5416 16.8300 1.8307 1.4004 0.0117

0.5416 0.0675 0.0376 0.0292 0.0436 0.0001

16.8300 0.0376 18.8063 −0.3323 4.1558 0.0012

1.8307 0.0292 −0.3323 0.5039 −0.1209 −0.0001

1.4004 0.0436 4.1558 −0.1209 3.3764 0.0004

0.0117 0.0001 0.0012 −0.0001 0.0004 0.0006




,

K∗ =



−0.7952 −0.0684 −0.0726 0.0242 −0.0488 −0.0002

1.6511 0.1098 0.0975 0.0601 0.0213 0.0002


 .

The convergence of Pk and Kk to their optimal values is illustrated in Figure

2.4. Notice that if B is accurately known, the problem can also be solved using the

method in [173]. However, that method requires a total learning time of 32s for 16

iterations, if the state and input information within 2s is collected for each iteration.

In addition, the method in [173] may need to reset the state at each iteration step,

in order to satisfy the PE condition.

2.4 Conclusions

A novel computational policy iteration approach for finding online adaptive optimal

controllers for CT linear systems with completely unknown system dynamics has

been presented in this chapter. This method solves the algebraic Riccati equation

iteratively using system state and input information collected online, without knowing

the system matrices. A practical online algorithm was proposed and has been applied

to the controller design for a turbocharged diesel engine with unknown parameters.

The methodology developed in this chapter serves as an important computational tool

to study the adaptive optimal control of CT systems. It is essential to the theories
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developed in the remaining chapters of this dissertation.
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Chapter 3

RADP for uncertain partially

linear systems

In the previous chapter, we have developed an ADP methodology for CT linear sys-

tems. Similar to the past literature of ADP, it is assumed that the system order is

known and the state variables are fully available. However, the system order may be

unknown due to the presence of dynamic uncertainties (or unmodeled dynamics) [82],

which are motivated by engineering applications in situations where the exact math-

ematical model of a physical system is not easy to be obtained. Of course, dynamic

uncertainties also make sense for the mathematical modeling in other branches of sci-

ence such as biology and economics. This problem, often formulated in the context of

robust control theory, cannot be viewed as a special case of output feedback control.

In addition, the ADP methods developed in the past literature may fail to guarantee

not only optimality, but also the stability of the closed-loop system when dynamic

uncertainty occurs. In the seminal paper [192], Werbos also pointed out the related

issue that the performance of learning may deteriorate when using incomplete data

in ADP.

In order to capture and model this feature from biological learning, in this chap-
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ter we propose a new concept of robust adaptive dynamic programming, a natural

extension of ADP to uncertain dynamic systems. It is worth noting that we focus

on the presence of dynamic uncertainties of which the state variables and the system

order are not precisely known.

As the first distinctive feature of the proposed RADP framework, the controller

design issue is addressed from a point of view of robust control with disturbance

attenuation. Specifically, by means of the popular backstepping approach [95], we

will show that a robust control policy, or adaptive critic, can be synthesized to yield

an arbitrarily small L2-gain with respect to the disturbance input. In addition, by

studying the relationship between optimality and robustness, it is shown that in the

absence of disturbance input, the robust control policy also preserves optimality with

respect to some iteratively constructed cost function. It should be mentioned that in

[1] the theory of zero-sum games was employed in ADP design but the gain from the

disturbance input to the output cannot be made arbitrarily small.

Our study on the effects of dynamic uncertainties, or unmodeled dynamics, is

motivated by engineering applications in situations where the exact mathematical

model of a physical system is not easy to be obtained. The presence of dynamic

uncertainty gives rise to interconnected systems for which the controller design and

robustness analysis become technically challenging. With this observation in mind,

we will adopt notions of input-to-output stability and strong unboundedness observ-

ability introduced in the nonlinear control community; see, for instance, [61, 83], and

[150]. We achieve the robust stability and suboptimality properties for the overall

interconnected system, by means of Lyapunov and small-gain techniques [83].

This chapter is organized as follows. Section 3.1 formulates the problem. Section

3.2 investigates the relationship between optimality and robustness for a general class

of partially linear, uncertain composite systems [133]. Section 3.3 presents a RAD-

P scheme for partial-state feedback design. Section 3.4 demonstrates the proposed
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RADP design methodology by means of an one-machine infinite-bus power system.

Concluding remarks are contained in Section 3.5.

3.1 Problem formulation

Consider the following partially linear composite system

ẇ = f(w, y), (3.1)

ẋ = Ax+B [z + ∆1(w, y)] , (3.2)

ż = Ex+ Fz +G [u+ ∆2(w, y)] , (3.3)

y = Cx (3.4)

where [xT , zT ]T ∈ Rn × Rm is the system state vector; w ∈ Rnw is the state of the

dynamic uncertainty; y ∈ Rq is the output; u ∈ Rm is the control input; A ∈ Rn×n,

B ∈ Rn×m, C ∈ Rq×n, E ∈ Rm×n, F ∈ Rm×m, and G ∈ Rm×m are unknown constant

matrices with the pair (A,B) stabilizable and G nonsingular; ∆1(w, y) = D∆(w, y)

and ∆2(w, y) = H∆(w, y) are the outputs of the dynamic uncertainty with D,H ∈

Rm×p two unknown constant matrices; the unknown functions f : Rnw × Rq → Rnw

and ∆ : Rnw × Rq → Rp are locally Lipschitz satisfying f(0, 0) = 0, ∆(0, 0) = 0. In

addition, assume the upper bounds of the norms of B, D, H, and G−1 are known.

Our objective is to find online a robust optimal control policy that globally asymp-

totically stabilizes the system (3.1)-(3.4) at the origin.

3.2 Optimality and robustness

In this section, we show the existence of a robust optimal control policy that globally

asymptotically stabilizes the overall system (3.1)-(3.4). To this end, let us make a few

assumptions on (3.1), which are often required in the literature of nonlinear control
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design [61, 82, 95].

Assumption 3.2.1. The w-subsystem (3.1) has strong unboundedness observability

(SUO) property with zero offset [83] and is input-to-output stable (IOS) with respect

to y as the input and ∆ as the output [83, 150].

Assumption 3.2.2. There exist a continuously differentiable, positive definite, radi-

ally unbounded function U : Rnw → R+, and a constant c ≥ 0 such that

U̇ =
∂U(w)

∂w
f(w, y) ≤ −2|∆|2 + c|y|2 (3.5)

for all w ∈ Rnw and y ∈ Rq.

We now show that an arbitrarily small L2 gain can be obtained for the subsystem

(3.2)-(3.4). Given any arbitrarily small constant γ > 0, we can choose Q and R in

(3.15) such that Q ≥ γ−1CTC and R−1 ≥ DDT . Define K∗ = R−1BTP ∗, ξ = z+K∗x,

Ac = A−BK∗, and let S∗ > 0 be the symmetric solution of the ARE

F̄ TS∗ + S∗F̄ +W − S∗GR−1
1 GTS∗ = 0 (3.6)

where W > 0, R−1
1 ≥ D̄D̄T , F̄ = F +K∗B, and D̄ = H+G−1K∗BD. Further, define

Ē = E +K∗Ac − FK∗, M∗ = R−1
1 GTS∗, N∗ = S∗Ē.

The following theorem gives the small-gain condition for the robust asymptotic

stability of the overall system (3.1)-(3.4).

Theorem 3.2.1. Under Assumptions 3.2.1 and 3.2.2, the control policy

u∗ = −
[
(M∗TR1)−1(N∗ +RK∗) +M∗K∗

]
x−M∗z (3.7)

globally asymptotically stabilizes the closed-loop system comprised of (3.1)-(3.4), if
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the small-gain condition holds:

γc < 1. (3.8)

Proof. Define

V (x, z, w) = xTP ∗x+ ξTS∗ξ + U (w) . (3.9)

Then, along the solutions of the closed-loop system comprised of (3.1)-(3.4) and (3.7),

by completing squares, it follows that

V̇ =
d

dt
(xTP ∗x) +

d

dt
(ξTS∗ξ) + U̇

≤ −γ−1|y|2 + |∆|2 + 2xTP ∗Bξ + |∆|2

−2ξTBTP ∗x+
(
c|y|2 − 2|∆|2

)

≤ −γ−1(1− cγ)|y|2

Therefore, we know lim
t→∞

y(t) = 0. By Assumption 3.2.1, all solutions of the

closed-loop system are globally bounded. Moreover, a direct application of LaSalle’s

Invariance Principle [86] yields the GAS property of the trivial solution of the closed-

loop system.

The proof is thus complete.

Next, we show that the control policy (3.7) is suboptimal, i.e., it is optimal with

respect to some cost function in the absence of the dynamic uncertainty. Notice that,

with ∆ ≡ 0, the system (3.2)-(3.3) can be rewritten in a more compact matrix form:

Ẋ = A1X +G1v (3.10)

where X =



xT

ξT


, v = u+G−1

[
Ē + (S∗)−1BTP ∗

]
x, A1 =




Ac B

−(S∗)−1BTP ∗ F̄


,
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and G1 =




0

G


.

Proposition 3.2.1. Under the conditions of Theorem 3.2.1, the performance index

J1 =

∫ ∞

0

[
XTQ1X + vTR1v

]
dτ (3.11)

for system (3.10) is minimized under the control policy

v∗ = u∗ +G−1
[
Ē + (S∗)−1BTP ∗

]
x (3.12)

Proof. It is easy to check that P̄ ∗ = block diag (P ∗, S∗) is the solution to the following

ARE

AT1 P̄
∗ + P̄ ∗A1 +Q1 − P̄ ∗G1R

−1
1 GT

1 P̄
∗ = 0 (3.13)

where Q1 = block diag
(
Q+K∗TRK∗,W

)
.

Therefore, by linear optimal control theory [99], we obtain the optimal control

policy

v∗ = −R−1
1 GT

1 P̄
∗X = −M∗ξ. (3.14)

The proof is thus complete.

Remark 3.2.1. It is of interest to note that Theorem 3.2.1 can be generalized to

higher-dimensional systems with a lower-triangular structure, by a repeated applica-

tion of backstepping and small-gain techniques in nonlinear control.

Remark 3.2.2. The cost function introduced here is different from the ones used

in game theory [1, 171], where the policy iterations are developed based on the game

algebraic Riccati equation (GARE). The existence of a solution of the GARE cannot
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be guaranteed when the input-output gain is arbitrarily small. Therefore, a significant

advantage of our method vs. the game-theoretic approach of [1, 171] is that we are

able to render the gain arbitrarily small.

3.3 RADP design

In this section, we develop a novel robust-ADP scheme to approximate the robust

optimal control policy (3.7). This scheme contains two learning phases. Phase-one

computes the matrices K∗ and P ∗. Then, based on the results derived from phase-

one, the second learning phase further computes the matrices S∗, M∗, and N∗. It is

worth noticing that the knowledge of A, B, E, and F is not required in our learning

algorithm. In addition, we will analyze the robust asymptotic stability of the overall

system under the approximated control policy obtained from our algorithm.

3.3.1 Phase-one learning

First, recall that, given K0 such that A− BK0 is Hurwitz, we can solve numerically

an ARE in the following form

P ∗A+ ATP ∗ +Q− P ∗BR−1BTP ∗ = 0 (3.15)

with Q = QT ≥ 0, R = RT > 0, and (A,Q1/2) observable, by iteratively finding Pk

and Kk from

0 = (A−BKk)
TPk + Pk(A−BKk) +Q+KT

k RKk, (3.16)

Kk+1 = R−1BTPk. (3.17)

Now, assume all the conditions of Theorem 3.2.1 are satisfied. Along the trajec-
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tories of (3.2), it follows that

xTPkx
∣∣t+T
t

= 2

∫ t+T

t

(z + ∆1 +Kkx)TRKk+1xdτ

−
∫ t+T

t

xT (Q+KT
k RKk)xdτ. (3.18)

Using Kronecker product representation, (7.59) can be rewritten as

xT ⊗ xT
∣∣t+T
t

vec(Pk)

= 2

[∫ t+T

t

xT ⊗ (z + ∆1 +Kkx)Tdτ

]
(In ⊗R)vec(Kk+1)

−
[∫ t+T

t

xT ⊗ xTdτ
]

vec(Q+KT
k RKk). (3.19)

For any φ ∈ Rnφ , ϕ ∈ Rnψ , and sufficiently large l > 0, we define the operators

δφψ : Rnφ × Rnψ → Rl×nφnψ and Iφψ : Rnφ × Rnψ → Rl×nφnψ such that

δφψ =

[
φ⊗ ψ|t1t0 φ⊗ ψ|t2t1 · · · φ⊗ ψ|tltl−1

]T
,

Iφψ =

[ ∫ t1
t0
φ⊗ ψdτ

∫ t2
t1
φ⊗ ψdτ · · ·

∫ tl
tl−1

φ⊗ ψdτ
]T

where 0 ≤ t0 < t1 < · · · < tl are constants.

Then, (3.19) implies the following matrix form of linear equations

Θk




vec(Pk)

vec(Kk+1)


 = Ξk (3.20)

where Θk ∈ Rl×n(n+m) and Ξk ∈ Rl are defined as

Θk =
[
δxx − 2Ixx(In ⊗KT

k R)− 2(Ixz + Ix∆1)(In ⊗R)
]
,

Ξk = −Ixx vec(Q+KT
k RKk).
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Given Kk such that A − BKk is Hurwitz, if there is a unique pair of matrices

(Pk, Kk+1), with Pk = P T
k , satisfying (3.20), we are able to replace (3.16) and (3.17)

with (3.20). In this way, the iterative process does not need the knowledge of A and

B.

Next, we approximate the matrices S∗, M∗, and N∗, which also appear in (3.7).

3.3.2 Phase-two learning

For the matrix Kk ∈ Rm×n obtained from phase-one learning, let us define ξ̂ =

z +Kkx. Then,

˙̂
ξ = Ekx+ Fkξ̂ +G(u+ ∆2) +KkB∆1 (3.21)

where Ek = E +Kk(A−BKk)− FKk, Fk = F +KkB.

Similarly as in phase-one learning, we seek the online implementation of the fol-

lowing iterative equations:

0 = Sk,j Fk,j + F T
k,j Sk,j +W +MT

k,j R1Mk,j (3.22)

Mk,j+1 = R−1
1 GTSk,j (3.23)

where Fk,j = Fk −GMk,j, and we assume there exists Mk,0 such that Fk,0 is Hurwitz.

Now, along the solutions of (3.21), we have

ξ̂TSk,j ξ̂
∣∣∣
t+T

t
= −

∫ t+T

t

ξ̂T
(
W +MT

k,jR1Mk,j

)
ξ̂dτ

+2

∫ t+T

t

(û+Mk,j ξ̂)
TR1Mk,j+1ξ̂dτ

+2

∫ t+T

t

ξ̂TNk,jxdτ + 2

∫ t+T

t

∆T
1Lk,j ξ̂dτ

where û = u+ ∆2, Nk,j = Sk,jEk and Lk,j = BTKT
k Sk,j .
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Then, we obtain the following linear equations that can be used to approximate

the solution to the ARE (3.6).

Φk,j vec

([
Sk,j Mk,j+1 Nk,j Lk,j

])
= Ψk,j (3.24)

where Φk,j ∈ Rl×m(n+m) and Ψk,j ∈ Rl are defined as:

Φk,j =
[
δξ̂ξ̂ − 2Iξ̂ξ̂(Im ⊗MT

k,jR1)− 2Iξ̂û(Im ⊗R1) − 2Ixξ̂ − 2Iξ̂∆1

]
,

Ψk,j = −Iξ̂ξ̂vec(Wk).

Notice that δξ̂ξ̂, Iξ̂û, Iξ̂ξ̂, Iξ̂∆1
∈ Rl×m2

, Ixξ̂ ∈ Rl×nm can be obtained by

δξ̂ξ̂ = δzz + 2δxz
(
KT
k ⊗ Im

)
+ δxx

(
KT
k ⊗KT

k

)
,

Iξ̂û = Izû + Ixû
(
KT
k ⊗ Im

)
,

Iξ̂ξ̂ = Izz + 2Ixz
(
KT
k ⊗ Im

)
+ Ixx

(
KT
k ⊗KT

k

)
,

Ixξ̂ = Ixz + Ixx(In ⊗KT
k ),

Iξ̂∆1
= Ix∆1

(
KT
k ⊗ Im

)
+ Iz∆1 .

Clearly, (3.24) does not rely on the knowledge of E, F , or G.

3.3.3 Implementation issues

Similar as in previous policy-iteration-based algorithms, an initial stabilizing control

policy is required in the learning phases. Here, we assume there exist an initial control

policy u0 = −Kxx −Kzz and a positive definite matrix P̄ = P̄ T satisfying P̄ > P̄ ∗,

such that along the trajectories of the closed-loop system comprised of (3.1)-(3.4) and
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u0, we have

d

dt

[
XT P̄X + U(w)

]
≤ −ε|X|2 (3.25)

where ε > 0 is a constant.

Notice that this initial stabilizing control policy u0 can be obtained using the idea

of gain assignment [83]. In addition, to satisfy the rank condition in Lemma 3.3.1

below, additional exploration noise may need to be added into the control signal.

The robust-ADP scheme can thus be summarized in the following algorithm:

Algorithm 3.3.1 Robust-ADP algorithm

1: Apply an initial control policy u = u0 to the system.
2: Let k = 0. Set Q, R, W , and R1 according to Lemma 3.2.1. Select a sufficiently

small constant ε′ > 0.
3: repeat
4: Solve Pk, Kk+1 from (3.20). Let k ← k + 1.
5: until |Pk − Pk−1| < ε′

6: Select W , R1 according to Lemma 3.2.1. Let j = 0.
7: repeat
8: Solve Sk,j, Mk,j+1, Nk,j and Lk,j from (3.24). Let j ← j + 1.
9: until |Sk,j − Sk,j−1| < ε′

10: Use

ũ = −
[
(MT

k,jR1)−1(Nk,j +RKk) +Mk,jKk

]
x−Mk,jz (3.26)

as the approximate control input.

3.3.4 Convergence analysis

Lemma 3.3.1. Suppose Ak and Fk,j are Hurwitz and there exists an integer l0 > 0,

such that the following holds for all l ≥ l0:

rank

([
Ixx Ixz Izz Ixû Izû Ix∆1 Iz∆1

])

=
n(n+ 1)

2
+
m(m+ 1)

2
+ 3mn+ 2m2. (3.27)
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Then,

1. there exist unique Pk = P T
k and Kk+1 satisfying (3.20), and

2. there exist unique Sk,j = STk,j, Mk,j+1, Nk,j, Lk,j satisfying (3.24).

Proof. The proof of 1) has been given in the previous setion, and is restated here for

the readers’ convenience. Actually, we only need to show that, given any constant

matrices P = P T ∈ Rn×n and K ∈ Rm×n, if

Θk




vec(P )

vec(K)


 = 0, (3.28)

we will have P = 0 and K = 0.

By definition, we have

Θk




vec(P )

vec(K)


 = Ixxvec(Y ) + 2(Ixz + Ix∆1)vec(Z) (3.29)

where

Y = ATkP + PAk +KT
k (BTP −RK) + (PB −KTR)Kk, (3.30)

Z = BTP −RK. (3.31)

Notice that since Y is symmetric, (3.28) and (3.29) imply

0 = Ix ν(Y ) + (Ixz + Ix∆1)vec(2Z). (3.32)

where

Ix =

[ ∫ t1
t0
µ(x)dτ

∫ t2
t1
µ(x)dτ · · ·

∫ tl
tl−1

µ(x)dτ

]T
.
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Under the rank condition in Lemma 3.3.1, we have

rank

([
Ixx Ixz + Ix∆1

])
≥ rank ([Ixx, Ixz, Izz, Ixû, Izû, Ix∆1 , Iz∆1 ])

−2mn− 1

2
m(m+ 1)− 2m2

=
1

2
n(n+ 1) +mn,

which implies

[
Ix Ixz + Ix∆1

]
has full column rank. Hence, Y = Y T = 0 and

Z = 0.

Finally, since Ak is Hurwitz for each k ∈ Z+, the only matrices P = P T and K

simultaneously satisfying (3.30) and (3.31) are P = 0 and K = 0.

Now we prove 2). Similarly, suppose there exist some constant matrices S,M,L ∈

Rm×m with S = ST , and N ∈ Rm×n satisfying

Φk,j vec

([
S M N L

])
= 0.

Then, we have

0 = Iξ̂ξ̂vec
[
SFk,j + F T

k,jS +MT
k,j(G

TS −R1M)

(SG−MTR1)Mk,j

]
+ Iξû 2vec(GTS −R1M)

+Ixξ 2vec(SEk −N) + Iξ̂∆1
2vec(BTKT

k S − L)

By definition, it holds:

[
Ixx, Iξ̂ξ̂, Ixξ̂, Iξ̂û, Ixû, Ix∆1 , Iξ̂∆1

]
= [Ixx, Ixz, Izz, Ixû, Izû, Ix∆1 , Iz∆1 ]Tn
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where Tn is a nonsingular matrix. Therefore,

1

2
m(m+ 1) + 2m2 +mn

≥ rank

([
Iξ̂ξ̂ Iξ̂û Ixξ̂ Iξ̂∆1

])

≥ rank
([
Ixx, Iξ̂ξ̂, Ixξ̂, Iξ̂û, Ixû, Ix∆1 , Iξ̂∆1

])
− 1

2
n(n+ 1)− 2mn

= rank ([Ixx, Ixz, Izz, Ixû, Izû, Ix∆1 , Iz∆1 ])− 1

2
n(n+ 1)− 2mn

=
1

2
m(m+ 1) + 2m2 +mn.

Following the same reasoning from (3.29) to (3.32), we obtain

0 = SFk,j + F T
k,jS +MT

k,j(G
TS −R1M) + (SG−MTR1)Mk,j (3.33)

0 = GTS −R1M, (3.34)

0 = SE −N, (3.35)

0 = BKkS − L (3.36)

where [S,E,M,L] = 0 is the only possible solution.

3.4 Application to synchronous generators

The power system considered in this chapter is an interconnection of two synchronous

generators described by [97]:

∆δ̇i = ∆ωi, (3.37)

∆ω̇i = − D

2Hi

∆ω +
ω0

2Hi

(∆Pmi + ∆Pei) , (3.38)

∆Ṗmi =
1

Ti
(−∆Pmi − ki∆ωi + ui) , i = 1, 2 (3.39)
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where, for the i-th generator, ∆δi, ∆ωi, ∆Pmi, and ∆Pei are the deviations of rotor

angle, relative rotor speed, mechanical input power, and active power, respectively.

The control signal ui represents deviation of the valve opening. Hi, Di, ω0, ki, and

Ti are constant system parameters.

The active power ∆Pei is defined as

∆Pe1 = −E1E2

X
[sin(δ1 − δ2)− sin(δ10 − δ20)] (3.40)

and ∆Pe2 = −∆Pe1, where δ10 and δ20 are the steady state angles of the first and

second generators. The second synchronous generator is treated as the dynamic

uncertainty, and it has a fixed controller u2 = −a1∆δ2 − a2∆ω2 − a3∆Pm2, with a1,

a2, and a3 its feedback gains.

Our goal is to design a robust optimal control policy u1 for the interconnected

power system. For simulation purpose, the parameters are specified as follows: D1 =

1, H1 = 3, ω0 = 314.159 rad/s, T1 = 5s, δ10 = 2 rad, D2 = 1, T2 = 5, X = 15,

k2 = 0, H2 = 3, a1 = 0.2236, a2 = −0.2487, a3 = −7.8992. Weighting matrices

are Q = block diag(5, 0.0001), R = 1, W = 0.01, and R1 = 100. The exploration

noise we employed for this simulation is the sum of sinusoidal functions with different

frequencies.

In the simulation, two generators were operated on their steady states from t = 0s

to t = 1s. An impulse disturbance on the load was simulated at t = 1s, and the overall

system started to oscillated. The RADP algorithm was applied to the first generator

from t = 2s to t = 3s. Convergence is attained after six iterations of phase-one

learning followed by ten iterations of phase-two learning, when the stopping criterions

|Pk − Pk−1| ≤ 10−6 and |Sk,j − Sk,j−1| ≤ 10−6 are both satisfied. The linear control

policy formulated after the RADP algorithm is as follows:

ũ1 = −256.9324∆δ1 − 44.4652∆ω1 − 153.1976∆Pm1.

40



0 1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

120

time (sec)

R
ot

or
 A

ng
le

 (
de

gr
ee

)

Generator 1

 

 

0 1 2 3 4 5 6 7 8 9 10
60

65

70

75

80

time (sec)

R
ot

or
 A

ng
le

 (
de

gr
ee

)

Generator 2

 

 

Robust ADP
Unlearned

Robust ADP
Unlearned

Oscillation started

Oscillation started

Controller updated

Controller updated

Figure 3.1: Trajectories of the rotor angle.
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Figure 3.2: Trajectories of the angular velocity.

41



The ideal robust optimal control policy is given for comparison as follows

u∗1 = −259.9324∆δ1 − 44.1761∆ω1 − 153.1983∆Pm1.

Trajectories of the output variables and convergence of the feedback gain matrices

are shown in Figures 3.1-3.2.

The new control policy for Generator 1 is applied from t = 3s to the end of

the simulation. It can be seen that oscillation has been significantly reduced after

RADP-based online learning.

3.5 Conclusions

In this chapter, we have proposed a framework of RADP to compute globally asymp-

totically stabilizing control policies with suboptimality and robustness properties in

the presence of dynamic uncertainties. A learning algorithm is provided for the on-

line computation of partial-state feedback control laws. The novel control scheme

is developed by integration of ADP, and some tools developed within the nonlinear

control community. Different from previous ADP schemes in the past literature, the

RADP framework can handle systems with dynamic uncertainties of which the state

variables and the system order are not precisely known. As an illustrative example,

the proposed algorithm has been applied to the robust optimal control for a two-

machine power system. In Chapter 4, the results developed here will be extended to

study multi-machine power systems.
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Chapter 4

RADP for large-scale systems

The development of intelligent online learning controller gains remarkable popularity

in the operation of large-scale complex systems, such as power systems. In recent

years, considerable attention has been paid to the stabilization of large-scale complex

systems [78], [116], [135], [145], [175], as well as the related consensus and synchro-

nization problems [24], [105], [146], [200]. Examples of large-scale systems arise from

ecosystems, transportation networks, and power systems, to name only a few, [49],

[104], [110], [132], [180], [206]. Often, in real-world applications, precise mathemati-

cal models are hard to build and the model mismatches, caused by parametric and

dynamic uncertainties, are thus unavoidable. This, together with the exchange of

only local system information, makes the design problem extremely challenging in

the context of complex networks.

In this chapter, we intend to extend the RADP theories in Chapters 2 and 3 for

decentralized optimal control of multimachine power systems, and a more generalized

a class of large-scale uncertain systems. The controller design for each subsystem

only needs to utilize local state variables without knowing the system dynamics. By

integrating a simple version of the cyclic-small-gain theorem [109], asymptotic stabil-

ity can be achieved by assigning appropriate weighting matrices for each subsystem.
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As a by-product, certain suboptimality properties can be obtained.

This chapter is organized as follows. Section 4.1 studies the global and robust

optimal stabilization of a class of large-scale uncertain systems. Section 4.2 develops

the robust ADP scheme for large-scale systems. Section 4.3 presents a novel solution

to decentralized stabilization based on the proposed methodology. It is our belief that

the proposed design methodology will find wide applications in large-scale systems.

Finally, Section 4.4 gives some brief concluding remarks.

4.1 Stability and optimality for large-scale systems

In this section, we first describe the class of large-scale uncertain systems to be stud-

ied. Then, we present our novel decentralized optimal controller design scheme. It will

also be shown that the closed-loop interconnected system enjoys some suboptimality

properties.

4.1.1 Description of large-scale systems

Consider the complex large-scale system of which the i-subsystem (1 ≤ i ≤ N) is

described by

ẋi = Aixi +Bi [ui + Ψi(y)] , yi = Cixi, 1 ≤ i ≤ N (4.1)

where xi ∈ Rni , yi ∈ Rqi , and ui ∈ Rmi are the state, the output and the control

input for the i-th subsystem; y =
[
yT1 , y

T
2 , · · · , yTN

]T
; Ai ∈ Rni×ni , Bi ∈ Rni×mi

are unknown system matrices. Ψi(·) : Rq → Rmi are unknown interconnections

satisfying |Ψi(y)| ≤ di|y| for all y ∈ Rq, with di > 0,
∑N

i=1 ni = n,
∑N

i=1 qi = q, and
∑N

i=1 mi = m. It is also assumed that (Ai, Bi) is a stabilizable pair, that is, there

exists a constant matrix Ki such that Ai −BiKi is a stable matrix.
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Notice that the decoupled system can be written in a compact form:

ẋ = ADx+BDu (4.2)

where x =
[
xT1 , x

T
2 , · · · , xTN

]T ∈ Rn, u =
[
uT1 , u

T
2 , · · · , uTN

]T ∈ Rm, AD =block

diag(A1, A2, · · · , AN) ∈ Rn×n, BD =block diag(B1, B2,· · · ,BN) ∈ Rn×m.

For system (4.2), we define the following quadratic cost

JD =

∞∫

0

(
xTQDx+ uTRDu

)
dτ (4.3)

where QD =block diag(Q1,Q2,· · · ,QN) ∈ Rn×n, RD =block diag(R1,R2,· · · , RN) ∈

Rm×m, Qi ∈ Rni×ni , and Ri ∈ Rmi×mi , with Qi = QT
i ≥ 0, Ri = RT

i > 0, and

(Ai, Q
1/2
i ) observable, for all 1 ≤ i ≤ N .

By linear optimal control theory [99], a minimum cost J�D in (4.3) can be obtained

by employing the following decentralized control policy

u�D = −KDx (4.4)

where KD = block diag(K1, K2, · · · , KN) is given by

KD = R−1
D BT

DPD (4.5)

and PD = block diag(P1, P2, · · · , PN) is the unique symmetric positive definite solu-

tion of the algebraic Riccati equation

ATDPD + PDAD − PDBDR
−1
D BT

DPD +QD = 0. (4.6)
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4.1.2 Decentralized stabilization

Now, we analyze the stability of the closed-loop system comprised of 4.1 and the

decentralized controller (4.4). We show that by selecting appropriate weighting ma-

trices QD and RD, global asymptotic stability can be achieved for the large-scale

closed-loop system.

To begin with, we give two lemmas.

Lemma 4.1.1. For any γi > 0 and εi > 0, let u� be the decentralized control policy

obtained from (4.4)-(4.6) with Qi ≥ (γi
−1 + 1)CT

i Ci + γi
−1εiIni and R−1

i ≥ d2
i Imi.

Then, along the solutions of the closed-loop system consisting of (4.1) and (4.4), we

have

d

dt

(
xTi γiPixi

)
≤ −|yi|2 − εi|xi|2 + γi

N∑

j=1,j 6=i

|yj|2. (4.7)
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Proof. Along the solutions of the closed-loop system, we have

d

dt

(
xTi Pixi

)

= xTi Pi [Aixi +Biui +BiΨi(y)] + [Aixi +Biui +BiΨi(y)]T Pixi

= xTi Pi [Aixi −BiKixi +BiΨi(y)] + [Aixi −BiKixi +BiΨi(y)]T Pixi

= xTi Pi(Ai −BiKi)xi + xTi (Ai −BiKi)
TPixi + xTi PiBiΨi(y) + ΨT

i (y)BT
i Pixi

= xTi
[
Pi(Ai −BiKi) + (Ai −BiKi)

TPi
]
xi + xTi PiBiΨi(y) + ΨT

i (y)BT
i Pixi

= xTi
[
−Qi − PiBiR

−1
i BT

i Pi
]
xi + xTi PiBiΨi(y) + ΨT

i (y)BT
i Pixi

= −xTi Qixi − xTi PiBiR
−1
i BT

i Pixi + xTi PiBiΨi(y) + ΨT
i (y)BT

i Pixi

≤ −xTi Qixi − d2
ix

T
i PiBiB

T
i Pixi + xTi PiBiΨi(y) + ΨT

i (y)BT
i Pixi

= −xTi Qixi + d−2
i ΨT

i (y)Ψi(y)

−d2
ix

T
i PiBiB

T
i Pixi + xTi PiBiΨi(y) + ΨT

i (y)BT
i Pixi − d−2

i ΨT
i (y)Ψi(y)

= −xTi Qixi + d−2
i ΨT

i (y)Ψi(y)

−
[
diB

T
i Pixi − d−1

i Ψi(y)
]T [

diB
T
i Pixi − d−1

i Ψi(y)
]

≤ −xTi Qixi + d−2
i ΨT

i (y)Ψi(y)

≤ −xTi
[(
γi
−1 + 1

)
CT
i Ci + γi

−1εiIni
]
xi + d−2

i ΨT
i (y)Ψi(y)

≤ −
(
γi
−1 + 1

)
|yi|2 − γi−1εi|xi|2 + |y|2

≤ −γi−1|yi|2 − γi−1εi|xi|2 +
N∑

j=1,j 6=i

|yj|2.

Therefore,

d

dt

(
γix

T
i Pixi

)
≤ −|yi|2 − εi|xi|2 + γi

N∑

j=1,j 6=i

|yj|2.

The proof is complete.

Lemma 4.1.2. Under the conditions of Lemma 4.1.1, suppose the following cyclic-
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small-gain condition holds

N−1∑

j=1

j
∑

1≤i1<i2<···<ij+1≤j+1

γi1γi2 · · · γij+1
< 1. (4.8)

Then, there exist constants ci > 0 for all 1 ≤ i ≤ N , such that along the solutions of

the closed-loop system (4.1) and (4.4), we have

d

dt

(
N∑

i=1

xTi ciγiPixi

)
≤ −|y|2 −

N∑

j=1

ciγiεi|xi|2. (4.9)

Proof. To begin with, let us consider the following linear equations




−1 γ2 γ3 · · · γN

γ1 −1 γ3 · · · γN

γ1 γ2 −1
. . . γN

...
...

. . . . . .
...

γ1 γ2 γ3 · · · −1







c1

c2

c3

...

cN




=




−1

−1

−1

...

−1




(4.10)

First, we show that, if the cyclic-small-gain condition (4.8) holds, the equation

(4.10) can be solved as

ci =

∏N
j=1,j 6=i(γj + 1)

1−∑N−1
j=1 j

∑
1≤i1<i2<···<ij+1≤j+1 γi1γi2 · · · γij+1

> 0. (4.11)

Indeed, it can be proved by mathematical induction: 1) if N = 2, (4.10) is reduced

to



−1 γ2

γ1 −1






c1

c2


 =



−1

−1


 . (4.12)

and the solution is c1 =
1 + γ2

1− γ1γ2

, c2 =
1 + γ1

1− γ1γ2

. Notice that the solution is unique,
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because the cyclic-small-gain condition (4.8) guarantees that the determinant of the

coefficient matrix is non-zero.

2) Suppose (4.11) is the solution of (4.10) with N = N ′ − 1, we show it is also valid

for N = N ′. Then, from the first row of (4.10), we have

−
N ′−1∏

j=1,j 6=i

(γj + 1) +
N ′−1∑

i=2

N ′−1∏

j=1,j 6=i

(γj + 1)γi

=
N ′−2∑

j=1

j
∑

1≤i1<i2<···<ij+1≤j+1

γi1γi2 · · · γij+1
− 1 (4.13)

Now,

−
N ′∏

j=1,j 6=i

(γj + 1) +
N ′∑

i=2

N ′∏

j=1,j 6=i

(γj + 1)γi

= −
N ′−1∏

j=1,j 6=i

(γj + 1)(γN ′ + 1) +
N ′−1∑

i=2

N ′−1∏

j=1,j 6=i

(γj + 1)(γN ′ + 1)γi +
N ′−1∏

j=1

(γj + 1)γN ′

=

[
−

N ′−1∏

j=1,j 6=i

(γj + 1) +
N ′−1∑

i=2

N ′−1∏

j=1,j 6=i

(γj + 1)γi

]
(γN ′ + 1) +

N ′−1∏

j=1

(γj + 1)γN ′

=



N ′−2∑

j=1

j
∑

1≤i1<i2<···<ij+1≤j+1

γi1γi2 · · · γij+1
− 1


 (γN ′ + 1) +

N ′−1∏

j=1

(γj + 1)γN ′

=
N ′−1∑

j=1

j
∑

2≤i1<i2<···<ij+1≤j+1

γi1γi2 · · · γij+1
+

N ′−2∑

j=1

j
∑

1≤i1<i2<···<ij+1≤j+1

γi1γi2 · · · γij+1

+
N ′−1∏

j=1

(γj + 1)γN ′ − γN ′ − 1

=
N ′−1∑

j=1

j
∑

1≤i1<i2<···<ij+1≤j+1

γi1γi2 · · · γij+1
− 1.

This implies, with N = N ′, the first row of (4.10) is valid with the solution (4.11).

Same derivations can be applied to the rest rows.
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Together with Lemma 2.1 we obtain

d

dt

(
N∑

i=1

xTi ciγiPixi

)

≤ −
N∑

i=1

ciγiεi|xi|2 +
N∑

i=1

ci

(
−|yi|2 + γi

N∑

j=1,j 6=i

|yj|2
)

≤ −
N∑

i=1

ciγiεi|xi|2 +




|y1|2

|y2|2

|y3|2

· · ·

|yN |2




T 


−1 γ2 γ3 · · · γN

γ1 −1 γ3 · · · γN

γ1 γ2 −1
. . . γN

...
...

. . . . . .
...

γ1 γ2 γ3 · · · −1







c1

c2

c3

...

cN




= −
N∑

j=1

ciγiεi|xi|2 − |y|2.

The proof is complete.

In summary, we obtain the following theorem:

Theorem 4.1.1. The overall closed-loop system (4.1), (4.4) is globally asymptotically

stable if the cyclic-small-gain condition (4.8) holds.

Proof. Define the Lyapunov candidate

VN =
N∑

i=1

xTi ciγiPixi. (4.14)

By Lemma 4.1.2, along the solutions of (4.1), it follows

V̇N ≤ −
N∑

j=1

ciγiεi|xi|2 − |y|2. (4.15)

Hence, the closed-loop system is globally asymptotically stable.
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Remark 4.1.1. It is of interest to note that a more generalized cyclic-small-gain

condition based on the notion of input-to-output stability [83], [150] can be found in

[109].

4.1.3 Suboptimality analysis

Suppose Ψi(·) is differentiable at the origin for all 1 ≤ i ≤ N , system (4.1) can be

linearized around the origin as

ẋ = ADx+BDu+ ACx, y = CDx. (4.16)

Notice that under the decentralized control policy (4.4), the cost (4.3) yields a

minimum cost value J⊕D for the coupled system (4.16), which may differ from J�D . In

order to study the relationship between J⊕D and J�D , define

MD = blockdiag(σ1In1 , σ2In2 , · · · , σNInN ) ∈ Rn×n (4.17)

where σi > 0 with 1 ≤ i ≤ N .

To quantify the suboptimality of the closed-loop system composed of (4.16) and

(4.4), we recall the following concept and theorem from [175]:

Definition 4.1.1 ([175]). The decentralized control law (4.4) is said to be suboptimal

for system (4.1), if there exists a positive number σ such that

J⊕D ≤ σ−1J�D . (4.18)

Theorem 4.1.2 ([175]). Suppose there exists a matrix MD as defined in (4.17) such

that the matrix

F (MD) = ATCM
−1
D PD +M−1

D PDAC + (I −M−1
D )(QD +KT

DRDKD) (4.19)
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satisfy F (MD) ≤ 0. Then, the control u�D is suboptimal for (4.16) with degree

σ = min
1≤i≤N

{σi}. (4.20)

The following theorem summarizes the suboptimality of the controller (4.4) under

the cyclic-small-gain condition 4.8.

Theorem 4.1.3. The decentralized controller u�D is suboptimal for system (4.1) with

degree

σ = min
1≤i≤N

{
1

ciγi
min

1≤i≤N

(
ciγi

γiε
−1
i λM + 1

, 1

)}
(4.21)

if the condition (4.8) holds.

Proof. Let σ−1
i = αciγi with α >

1

min
1≤i≤N

(ciγi)
and α ≥ 1.

Then, by (4.19) we obtain

d

dt

(
xTM−1

D PDx
)

= xT
(
M−1

D PDAD + ADM
−1
D PD +M−1

D PDAC + ATCM
−1
D PD

)
x

= xT
(
−M−1

D QD −M−1
D KT

DRDKD +M−1
D PDAC + ATCM

−1
D PD

)
x

= xT
[
F (MD)−QD −KT

DRDKD

]
x
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Therefore, by Lemma 4.1.2, it follows that

xTF (MD)x =
d

dt

(
xTM−1

D PDx
)

+ xT
(
QD +KT

DRDKD

)
x

≤
N∑

i=1

xTi
[
−σ−1

i (Qi − CT
i Ci)− α|yi|2 +Qi +KT

i RiKi

]
xi

= −
N∑

i=1

xTi
[
σ−1
i (Qi − CT

i Ci) + αCT
i Ci −Qi −KT

i RiKi

]
xi

= −
N∑

i=1

xTi
[(
σ−1
i − 1

)
(Qi − CT

i Ci)−KT
i RiKi

]
xi

≤ −
N∑

i=1

[
(αciγi − 1)

εi
γi
− λM

]
|xi|2

where λM denotes the maximal eigenvalue of KT
i RiKi.

Notice that F (MD) ≤ 0, if we set

α = max
1≤i≤N

(
γiε
−1
i λM + 1

ciγi
, 1

)
(4.22)

Therefore, we obtain

σ = min
1≤i≤N

{
1

ciγi
min

1≤i≤N

(
ciγi

γiε
−1
i λM + 1

, 1

)}
(4.23)

The proof is complete by Theorem 4.1.2.

4.2 The RADP design for large-scale systems

Consider the following algebraic Riccati equation

ATi Pi + PiAi +Qi − PiBiR
−1
i BT

i Pi = 0, 1 ≤ i ≤ N. (4.24)

It has been shown in [89] that, given K
(0)
i such that Ai − BiK

(0)
i is Hurwitz,
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sequences {P (k)
i } and {K(k)

i } uniquely determined by

0 = (A
(k)
i )TP

(k)
i + PiA

(k)
i +Q

(k)
i , (4.25)

K
(k+1)
i = R−1

i BT
i P

(k)
i (4.26)

with A
(k)
i = Ai − BiK

(k)
i , and Q

(k)
i = Qi + (K

(k)
i )TRiK

(k)
i , have the properties that

lim
k→∞

P
(k)
i = Pi, lim

k→∞
K

(k)
i = Ki = R−1

i BT
i Pi, and A

(k)
i is Hurwitz for all k ∈ Z+.

For the i-th subsystem, along the solutions of (4.1), it follows that

xTi P
(k)
i xi

∣∣∣
t+δt

t
= 2

∫ t+δt

t

(ûi +K
(k)
i xi)

TRiK
(k+1)
i xidτ

−
∫ t+δt

t

xTi Q
(k)
i xi dτ (4.27)

where ûi = ui + Ψi(y).

For sufficiently large integer li ≥ 0, define δixx ∈ Rli× 1
2
ni(ni+1), I ixx ∈ Rli×n2

i , and

I ixu ∈ Rli×mini as follows

δixx =

[
µ(xi)|t1,it0,i µ(xi)|t2,it1,i · · · µ(xi)|tli,itli−1,i

]T
,

I ixx =

[ ∫ t1,i
t0,i

xi ⊗ xidτ
∫ t2,i
t1,i

xi ⊗ xidτ · · ·
∫ tli,i
tli−1,i

xi ⊗ xidτ
]T
,

I ixu =

[ ∫ t1,i
t0,i

xi ⊗ ûidτ
∫ t2,i
t1,i

xi ⊗ ûidτ · · ·
∫ tli,i
tli−1,i

xi ⊗ ûidτ
]T

where µ(xi) ∈ R 1
2
ni(ni+1) is defined as

µ(xi) =
[
x2
i,1, xi,1xi,2, · · · , xi,1xi,ni , x2

i,2, xi,2xi,3, · · · , xi,ni−1xi,ni , x
2
i,ni

]T

and 0 ≤ t0,i < t1,i < · · · < tli,i, for i = 1, 2, · · · , N . Also, for any symmetric matrix
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P ∈ Rni×ni , we define ν(P ) ∈ R 1
2
ni(ni+1) such that

ν(P ) = [p11, 2p12, · · · , 2p1ni , p22, 2p23, · · · , 2pni−1,ni , pni,ni ]
T .

Then, (7.59) implies the following matrix form of linear equations

Θ
(k)
i




ν(P
(k)
i )

vec(K
(k+1)
i )


 = Ξ

(k)
i (4.28)

where the matrices Θ
(k)
i ∈ Rli× 1

2
ni(ni+1)+nimi and Ξ

(k)
i ∈ Rli are defined as

Θ
(k)
i =

[
δixx −2I ixx(Ini ⊗ (K

(k)
i )TRi)− 2I ixu(Ini ⊗Ri)

]
,

Ξ
(k)
i = −I ixx vec(Q

(k)
i ).

Clearly, if (4.28) has a unique solution, we are able to replace (4.25) and (4.26)

by (4.28). In this way, the knowledge of both Ai and Bi is no longer needed.

Assumption 4.2.1. rank ([I ixx, I
i
xu]) =

ni(ni + 1)

2
+ nimi.

Theorem 4.2.1. Under Assumption 5.2.1, the matrices P
(k)
i = (P

(k)
i )T and K

(k+1)
i

determined by (4.28) satisfy lim
k→∞

P
(k)
i = Pi and lim

k→∞
K

(k)
i = Ki.

Proof. Step 1): First of all, we show that, for each i = 1, 2, · · · , N , and k = 0, 1, · · · ,

equation (4.28) has a unique solution (P
(k)
i , K

(k+1)
i ) with P

(k)
i = (P

(k)
i )T .

Notice that it amounts to show that the following linear equation

Θ
(k)
i Xi = 0 (4.29)

has only the trivial solution Xi = 0, for each i = 1, 2, · · · , N , and k = 0, 1, · · ·

To this end, we prove by contradiction: Assume Xi =




Y i
v

Zi
v


 ∈ R 1

2
ni(ni+1)+mini
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is a nonzero solution of (4.29), where Y i
v ∈ R 1

2
ni(ni+1) and Zi

v ∈ Rmini . Then, a

symmetric matrix Yi ∈ Rni×ni and a matrix Zi ∈ Rmi×ni can be uniquely determined,

such that ν(Yi) = Y i
v and vec(Zi) = Zi

v.

By (7.59), we have

Θ
(k)
i Xi = I ixxvec(Mi) + 2I ixuvec(Ni) (4.30)

where

Mi = (A
(k)
i )TY + Y A

(k)
i + (K

(k)
i )T (BT

i Yi −RiZi)

+(YiBi − ZT
i Ri)K

(k)
i , (4.31)

Ni = BT
i Yi −RiZi. (4.32)

Notice that since Mi is symmetric, we have

I ixxvec(Mi) = I ix̄ν(Mi) (4.33)

where I ix̄ ∈ Rl× 1
2
ni(ni+1) is defined as:

I ix =

[ ∫ t1,i
t0,i

x̄idτ,
∫ t2,i
t1,i

x̄idτ, · · · ,
∫ tl,i
tl−1,i

x̄idτ

]T
. (4.34)

Then, (4.29) and (4.30) imply the following matrix form of linear equations

[
I ix, 2I ixu

]



ν(Mi)

vec(Ni)


 = 0. (4.35)

Under Assumption 5.2.1, we know

[
I ix, 2I ixu

]
has full column rank. Therefore,

the only solution to (4.35) is ν(Mi) = 0 and vec(Ni) = 0. As a result, we have Mi = 0

and Ni = 0.
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Now, by (4.32) we know Zi = R−1
i BT

i Yi, and (4.31) is reduced to the following

Lyapunov equation

(A
(k)
i )TYi + YiA

(k)
i = 0. (4.36)

Since A
(k)
i is Hurwitz for all k ∈ Z+, the only solution to (4.36) is Yi = 0. Finally, by

(4.32) we have Zi = 0. Also, we have Xi = 0. But it contradicts with the assumption

that Xi 6= 0. Therefore, Θ
(k)
i must have full column rank for all k ∈ Z+.

Step 2): Given a stabilizing feedback gain matrix K
(k)
i , if P

(k)
i = (P

(k)
i )T is the

solution of (4.25), K
(k+1)
i is uniquely determined by K

(k+1)
i = R−1

i BT
i P

(k)
i . By (7.59),

we know that P
(k)
i and K

(k+1)
i satisfy (4.28). On the other hand, let P = P T ∈ Rni×ni

and K ∈ Rmi×ni
i , such that

Θ
(k)
i




ν(P )

vec(K)


 = Ξ

(k)
i .

Then, we immediately have ν(P ) = ν(P )
(k)
i and vec(K) = vec(K

(k+1)
i ). By Step

1), P = P T and K are unique. In addition, by the definitions of ν(P ) and vec(K),

P
(k)
i = P and K

(k+1)
i = K are uniquely determined.

Therefore, the policy iteration (4.28) is equivalent to (4.25) and (4.26). By The-

orem in [89], the convergence is thus proved.

In summary, we give the following robust ADP algorithm for practical online

implementation. Notice that the algorithm can be implemented to each subsystem

in parallel without affecting each other. The learning system implemented for each

subsystem only needs to use the state and input information of the subsystem.

Remark 4.2.1. The algorithm can be implemented to each subsystem in parallel

without affecting each other. The learning system implemented for each subsystem

57



Algorithm 4.2.1 Robust ADP algorithm for large-scale systems

1: Select appropriate matrices Qi and Ri such that the condition (4.8) is satisfied.
k ← 0.

2: For the i-th subsystem, employ ui = −K(0)
i xi + ei, with ei the exploration noise,

as the input. Record δixx, I
i
xx and I ixu until Assumption 5.2.1 is satisfied.

3: Solve P
(k)
i and K

(k+1)
i from (4.28).

4: Let k ← k + 1, and repeat Step 3 until
5: |P (k)

i − P (k−1)
i | ≤ ε for all k ≥ 1, where the constant ε > 0 can be any predefined

small threshold.
6: Use ui = −K(k)

i xi as the approximated optimal control policy to the i-th subsys-
tem.

only needs to use the state and input information of the subsystem.

4.3 Application to a ten machine power system

4.3.1 System model

Consider the classical multimachine power system with governor controllers [97]

δ̇i(t) = ωi(t), (4.37)

ω̇i(t) = − Di

2Hi

ωi(t) +
ω0

2Hi

[Pmi(t)− Pei(t)] , (4.38)

Ṗmi(t) =
1

Ti
[−Pmi(t) + ugi(t)] , (4.39)

Pei(t) = E ′qi

N∑

j=1

E ′qj [Bij sin δij(t) +Gij cos δij(t)] (4.40)

where δi(t) is the angle of the i-th generator, δij = δi − δj; ωi(t) is the relative rotor

speed; Pmi(t) and Pei(t) are the mechanical power and the electrical power; E ′qi is the

transient EMF in quadrature axis, and is assumed to be constant under high-gain

SCR controllers; Di, Hi, and Ti are the damping constant, the inertia constant and

the governor time constant; Bij, Gij are constants for 1 ≤ i, j ≤ N .
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Similarly as in [49], system (4.37)-(4.39) can be put into the following form,

∆δ̇i(t) = ∆ωi(t), (4.41)

∆ω̇i(t) = − Di

2Hi

∆ωi(t) +
ω0

2Hi

∆Pmi(t), (4.42)

∆Ṗmi(t) =
1

Ti
[−∆Pmi(t) + ui(t)− di(t)] (4.43)

where

∆δi(t) = δi(t)− δi0,

∆ωi(t) = ωi(t)− ωi0,

∆Pmi(t) = Pmi(t)− Pei(t),

ui(t) = ugi(t)− Pei(t),

di(t) = E ′qi

N∑

j=1,j 6=i

E ′qj [Bij cos δij(t)−Gij sin δij(t)] [∆ωi(t)−∆ωj(t)] .

Assume there exists a constant β > 0 such that max
1≤i,j≤N

[
E ′qiE

′
qj(|Bij|+ |Gij|)

]
< β.

Then,

|di(t)| ≤ (N − 1)β
N∑

j=1

|∆ωi −∆ωj| ≤ (N − 1)2β
N∑

j=1

|∆ωj|.

Therefore, the model (4.41)-(4.43) is in the form (4.1), if we define xi = [∆δi(t)

∆ωi(t) ∆Pei(t)]
T and yi = ∆ωi(t).

4.3.2 Numerical simulation

A ten-machine power system is considered for numerical studies. In the simulation,

Generator 1 is used as the reference machine. Governor controllers and ADP-based

learning systems are installed on Generators 2-10.

Simulation parameters for the ten-machine power system are shown in Tables 1-3.
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Also the steady state frequency is set to be ω0 = 314.15rad/s. The initial feedback

policies are

K
(0)
i =

[
10 50 0

]
, 1 ≤ i ≤ 10. (4.44)

Table 4.1: Parameters for the generators
G1 G2 G3 G4 G5 G6 G7 G8 G9 G10

Hi(p.u.) ∞ 6.4 3 5.5 5.2 4.7 5.4 4.9 5.1 3.4
Di(p.u.) - 1 1.5 2 2.2 2.3 2.6 1.8 1.7 2.9
Ti(s) - 6 6.3 4.9 6.6 5.8 5.9 5.5 5.4 5.5

Eqi(p.u.) 1 1.2 1.5 0.8 1.3 0.9 1.1 0.6 1.5 1
δi0(◦) 0 108.86 97.4 57.3 68.75 74.48 45.84 68.75 40.11 63.03

The admittance matrices for the transmission lines are

Table 4.2: Imaginary parts of the admittance matrix
Bij j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8 j = 9 j = 10
i = 1 0.25 0.19 0.41 0.30 0.29 0.48 0.24 0.09 0.21 0.23
i = 2 0.19 0.39 0.25 0.53 0.28 0.29 0.38 0.33 0.24 0.38
i = 3 0.41 0.25 0.05 0.27 0.25 0.22 0.27 0.21 0.33 0.49
i = 4 0.30 0.53 0.27 0.57 0.33 0.33 0.13 0.29 0.49 0.13
i = 5 0.29 0.28 0.25 0.32 0.21 0.37 0.30 0.03 0.24 0.31
i = 6 0.48 0.29 0.22 0.33 0.37 0.46 0.28 0.41 0.35 0.14
i = 7 0.24 0.38 0.27 0.13 0.30 0.28 0.12 0.43 0.14 0.53
i = 8 0.09 0.33 0.21 0.29 0.03 0.41 0.43 0.33 0.16 0.44
i = 9 0.21 0.24 0.33 0.49 0.24 0.35 0.14 0.16 0.36 0.21
i = 10 0.23 0.38 0.49 0.13 0.31 0.14 0.53 0.44 0.21 0.37

All the parameters, except for the operating points, are assumed to be unknown

to the learning system. The weighting matrices are set to be Qi = 1000I3, Ri = 1,

for i = 2, 3, · · · , 10.

From t = 0s to t = 1s, all the generators were operating at the steady state. At

t = 1s, an impulse disturbance on the active power was added to the network. As

a result, the power angles and frequencies started to oscillate. In order to stabilize
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Table 4.3: Real parts of the admittance matrix
Gij j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8 j = 9 j = 10
i = 1 0.21 0.05 0.00 0.14 0.04 -0.01 0.00 0.28 -0.08 -0.00
i = 2 0.05 0.29 0.03 0.02 0.13 -0.17 -0.00 -0.01 -0.11 -0.04
i = 3 0.00 0.03 0.15 0.18 -0.27 -0.10 0.15 -0.05 0.23 0.28
i = 4 0.13 0.01 0.18 0.05 -0.11 -0.07 0.22 -0.11 0.24 -0.15
i = 5 0.04 0.13 -0.27 -0.11 0.08 -0.20 -0.07 -0.19 0.03 -0.15
i = 6 -0.01 -0.17 -0.10 -0.07 -0.20 0.02 -0.03 0.04 0.12 -0.07
i = 7 0.00 -0.00 0.15 0.22 -0.07 -0.03 0.04 0.06 0.06 -0.10
i = 8 0.28 -0.01 -0.05 -0.11 -0.19 0.04 0.06 0.27 0.13 0.11
i = 9 -0.08 -0.11 0.23 0.23 0.03 0.12 0.06 0.13 0.19 -0.17
i = 10 -0.00 -0.04 0.28 -0.15 -0.15 -0.07 -0.10 0.11 -0.17 0.21

the system and improve its performance, the learning algorithm is conducted from

t = 4s to t = 5s. Robust ADP-based control policies for the generators are applied

from t = 5s to the end of the simulation. Trajectories of the angles and frequencies

of each generators are shown in Figures 4.1-4.6.

4.4 Conclusions

This chapter has studied the decentralized control of large-scale complex systems

with uncertain system dynamics. We have developed an RADP-based online learning

method for a class of large-scale systems, and a novel decentralized controller imple-

mentation algorithm is presented. The obtained controller globally asymptotically

stabilizes the large-scale system, and at the same time, preserves suboptimality prop-

erties. In addition, the effectiveness of the proposed methodology is demonstrated via

its application to the online learning control of a tem-machine power system with gov-

ernor controllers. The methodology can be combined with the techniques in Chapter

3 to study large-scale systems with unmatched disturbance input (see [16] for some

preliminary results). It will be interesting to further applied the proposed method-

ology to study complex real-world power networks ([27, 25, 26, 134, 152, 201, 201]),

wind conversion systems [143], and demand response management problems [29].
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Figure 4.1: Power angle deviations of Generators 2-4.
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Figure 4.2: Power angle deviations of Generators 5-7.
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Figure 4.3: Power angle deviations of Generators 8-10.
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Figure 4.4: Power frequencies of Generators 2-4.
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Figure 4.5: Power frequencies of Generators 5-7.
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Figure 4.6: Power frequencies of Generators 8-10.
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Chapter 5

Neural-networks-based RADP for

nonlinear systems

As mentioned in Chapter 3, a common assumption in the past literature of ADP

is that the system order is known and the state variables are either fully available

or reconstructible from the output [101]. This problem, often formulated in the

context of robust control theory, cannot be viewed as a special case of output feedback

control. In addition, the ADP methods developed in the past literature may fail to

guarantee not only optimality, but also the stability of the closed-loop system when

dynamic uncertainty occurs. The RADP framework is developed to bridge the above-

mentioned gap in the past literature of ADP, and it can be viewed as an extension of

ADP to linear and partially linear systems [161], [164] with dynamic uncertainties.

This chapter studies RADP designs for genuinely nonlinear systems in the pres-

ence of dynamic uncertainties. We first decompose the open-loop system into two

parts: The system model (ideal environment) with known system order and fully ac-

cessible state, and the dynamic uncertainty, with unknown system order, dynamics,

and unmeasured states, interacting with the ideal environment. In order to handle

the dynamic interaction between two systems, we resort to the gain assignment idea
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[83], [129]. More specifically, we need to assign a suitable gain for the system model

with disturbance in the sense of Sontag’s input-to-state stability (ISS) [149], [151].

The backstepping, robust redesign, and small-gain techniques in modern nonlinear

control theory are incorporated into the RADP theory, such that the system mod-

el is made ISS with an arbitrarily small gain. To perform stability analysis for the

interconnected systems, we apply the nonlinear small-gain theorem [83], which has

been proved to be an efficient tool for nonlinear system analysis and synthesis. As a

consequence, the proposed RADP method can be seen as a nonlinear variant of [68].

Moreover, it solves the semi-global stabilization problem [161] in the sense that the

domain of attraction for the closed-loop system can be made as large as possible.

The remainder of the paper is organized as follows. Section 5.1 reviews the on-

line policy iteration technique for affine nonlinear systems. Section 5.2 studies the

methodology of robust optimal design and gives a practical algorithm. Section 5.3

extends the RADP theory to nonlinear systems with unmatched dynamic uncertain-

ties. Two numerical examples, including the controller designs for a jet engine and

for a synchronous power generator, are provided in Section 5.4. Finally, concluding

remarks are given in Section 5.5.

5.1 Problem formulation and preliminarlies

5.1.1 Nonlinear optimal control

Consider the system

ẋ = f(x) + g(x)u (5.1)

where x ∈ Rn is the system state, u ∈ R is the control input, f, g : Rn → Rn are

locally Lipschitz functions. The to-be-minimized cost associated with (5.1) is defined

67



as

J(x0, u) =

∫ ∞

0

[
Q(x) + ru2

]
dt, x(0) = x0 (5.2)

where Q(·) is a positive definite function, and r > 0 is a constant. In addition,

assume there exists an admissible control policy u = u0(x) in the sense that, under

this policy, the system (5.1) is globally asymptotically stable and the cost (5.2) is

finite. By [99], the control policy that minimizes the cost (5.2) can be solved from

the following Hamilton-Jacobi-Bellman (HJB) equation:

0 = ∇V (x)Tf(x) +Q(x)− 1

4r

[
∇V (x)Tg(x)

]2
(5.3)

with the boundary condition V (0) = 0. Indeed, if the solution V ∗(x) of (5.3) exists,

the optimal control policy is given by

u∗(x) = − 1

2r
g(x)T∇V ∗(x). (5.4)

In general, the analytical solution of (5.3) is difficult to be obtained. However, if

V ∗(x) exists, it can be approximated using the policy iteration technique [136]:

Algorithm 5.1.1 Nonlinear policy iteration algorithm

1: Find an admissible control policy u0(x).
2: For any integer i ≥ 0, solve for Vi(x), with Vi(0) = 0, from

0 = ∇Vi(x)T [f(x) + g(x)ui(x)] +Q(x) + rui(x)2. (5.5)

3: Update the control policy by

ui+1(x) = − 1

2r
g(x)T∇Vi(x). (5.6)

Convergence of the policy iteration (5.5) and (5.6) is concluded in the following

theorem, the proof of which follows the same lines of reasoning as in the proof of [136,
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Theorem 4].

Theorem 5.1.1. Consider Vi(x) and ui+1(x) defined in (5.5) and (5.6). Then, for

all i = 0, 1, · · · ,

0 ≤ Vi+1(x) ≤ Vi(x), ∀x ∈ Rn (5.7)

and ui+1(x) is admissible. In addition, if the solution V ∗(x) of (5.3) exists, then

for each fixed x, {Vi(x)}∞i=0 and {ui(x)}∞i=0 converge pointwise to V ∗(x) and u∗(x),

respectively.

5.2 Online Learning via RADP

In this section, we develop the RADP methodology for nonlinear systems as follows:

ẇ = ∆w(w, x) (5.8)

ẋ = f(x) + g(x) [u+ ∆(w, x)] (5.9)

where x ∈ Rn is the measured component of the state available for feedback control,

w ∈ Rp is the unmeasurable part of the state with unknown order p, u ∈ R is the

control input, ∆w : Rp × Rn → Rp, ∆ : Rp × Rn → R are unknown locally Lipschitz

functions, f and g are defined the same as in (5.1) but are assumed to be unknown.

Our design objective is to find online the control policy which stabilizes the system

at the origin. Also, in the absence of the dynamic uncertainty (i.e., ∆ = 0 and the

w-subsystem is absent), the control policy becomes the optimal control policy that

minimizes (5.2).

69



5.2.1 Online policy iteration

The iterative technique introduced in Section 5.1 relies on the knowledge of both f(x)

and g(x). To remove this requirement, we develop a novel online policy iteration

technique, which can be viewed as the nonlinear extension of [68].

To begin with, notice that (5.9) can be rewritten as

ẋ = f(x) + g(x)ui(x) + g(x)vi (5.10)

where vi = u+∆−ui. For each i ≥ 0, the time derivative of Vi(x) along the solutions

of (5.10) satisfies

V̇i = ∇Vi(x)T [f(x) + g(x)ui(x) + g(x)vi]

= −Q(x)− ru2
i (x) +∇Vi(x)Tg(x)vi

= −Q(x)− ru2
i (x)− 2rui+1(x)vi. (5.11)

Integrating both sides of (5.11) on any time interval [t, t+ T ], it follows that

Vi(x(t+ T ))− Vi(x(t))

=

∫ t+T

t

[
−Q(x)− ru2

i (x)− 2rui+1(x)vi
]
dτ. (5.12)

Notice that, if an admissible control policy ui(x) is given, the unknown functions

Vi(x) and ui+1(x) can be approximated using (5.12). To be more specific, for any given

compact set Ω ⊂ Rn containing the origin as an interior point, let {φj(x)}∞j=1 be an

infinite sequence of linearly independent smooth basis functions on Ω, where φj(0) = 0

for all j = 1, 2, · · · . Then, by approximation theory [126], for each i = 0, 1, · · · , the
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cost function and the control policy can be approximated by:

V̂i(x) =

N1∑

j=1

ĉi,jφj(x), (5.13)

ûi+1(x) =

N2∑

j=1

ŵi,jφj(x). (5.14)

where N1 > 0, N2 > 0 are two sufficiently large integers, and ĉi,j, ŵi,j are constant

weights to be determined.

Replacing Vi(x), ui(x), and ui+1(x) in (5.12) with their approximations, we obtain

N1∑

j=1

ĉi,j [φj(x(tk+1))− φj(x(tk))]

= −
∫ tk+1

tk

2r

N2∑

j=1

ŵi,jφj(x)v̂idt (5.15)

−
∫ tk+1

tk

[
Q(x) + rû2

i (x)
]
dt+ ei,k

where û0 = u0, v̂i = u + ∆ − ûi, and {tk}lk=0 is a strictly increasing sequence with

l > 0 a sufficiently large integer. Then, the weights ĉi,j and ŵi,j can be solved in the

sense of least-squares (i.e., by minimizing
∑l

k=0 e
2
i,k).

Now, starting from u0(x), two sequences {V̂i(x)}∞i=0, and {ûi+1(x)}∞i=0 can be gen-

erated via the online policy iteration technique (5.15). Next, we show the convergence

of the sequences to Vi(x) and ui+1(x), respectively.

Assumption 5.2.1. There exist l0 > 0 and δ > 0, such that for all l ≥ l0, we have

1

l

l∑

k=0

θTi,kθi,k ≥ δIN1+N2 (5.16)
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where

θTi,k =




φ1(x(tk+1))− φ1(x(tk))

φ2(x(tk+1))− φ2(x(tk))

...

φN1(x(tk+1))− φN1(x(tk))

2r
∫ tk+1

tk
φ1(x)v̂idt

2r
∫ tk+1

tk
φ2(x)v̂idt

...

2r
∫ tk+1

tk
φN2(x)v̂idt




∈ RN1+N2 .

Assumption 5.2.2. The closed-loop system composed of (5.8), (5.9), and

u = u0(x) + e (5.17)

is ISS when e, the exploration noise, is considered as the input.

Remark 5.2.1. The reason for imposing Assumption 5.2.2 is twofold. First, like in

many other policy-iteration-based ADP algorithms, an initial admissible control policy

is desired. Inspired by [205], we further assume the initial control policy is stabilizing

in the presence of dynamic uncertainties. Such an assumption is feasible and realistic

by means of the designs in [80], [129]. Second, by adding the exploration noise, we

are able to satisfy Assumption 5.2.1, and at the same time keep the system solutions

bounded.

Under Assumption 5.2.2, we can find a compact set Ω0 which is an invariant set

of the closed-loop system composed of (5.8), (5.9), and u = u0(x). In addition, we

can also let Ω0 contain Ωi∗ as its subset. Then, the compact set for approximation

can be selected as Ω = {x : ∃w, s.t. (w, x) ∈ Ω0}.
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Theorem 5.2.1. Under Assumptions 5.2.1 and 5.2.2, for each i ≥ 0 and given ε > 0,

there exist N∗1 > and N∗2 > 0, such that

|
N1∑

j=1

ĉi,jφj(x)− Vi(x)| < ε, (5.18)

|
N2∑

j=1

ŵi,jφj(x)− ui+1(x)| < ε, (5.19)

for all x ∈ Ω., if N1 > N∗1 and N2 > N∗2 .

Proof. To begin with, given ûi, let Ṽi(x) be the solution of the following equation

with Ṽi(0) = 0.

∇Ṽi(x)T (f(x) + g(x)ûi(x)) +Q(x) + rû2
i (x) = 0 (5.20)

and denote ũi+1(x) = − 1

2r
g(x)T∇Ṽi(x)T .

Lemma 5.2.1. For each i ≥ 0, we have lim
N1,N2→∞

V̂i(x) = Ṽi(x), lim
N1,N2→∞

ûi+1(x) =

ũi+1(x), ∀x ∈ Ω.

Proof. By definition

Ṽi(x(tk+1))− Ṽi(x(tk))

= −
∫ tk+1

tk

[Q(x) + rû2
i (x) + 2rũi+1(x)v̂i]dt (5.21)

Let c̃i,j and w̃i,j be the constant weights such that Ṽi(x) =
∑∞

j=1 c̃i,jφj(x) and

ũi+1(x) =
∑∞

j=1 w̃i,jφj(x). Then, by (5.15) and (5.21), we have ei,k = θTi,kW̄i + ξi,k,
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where

W̄i =

[
c̃i,1 c̃i,2 · · · c̃i,N1

w̃i,1 w̃i,2 · · · w̃i,N2

]T

−
[
ĉi,1 ĉi,2 · · · ĉi,N1

ŵi,1 ŵi,2 · · · ŵi,N2

]T
,

ξi,k =
∞∑

j=N1+1

c̃i,j [φj(x(tk+1))− φj(x(tk))]

+
∞∑

j=N2+1

w̃i,j

∫ tk+1

tk

2rφj(x)v̂idt.

Since the weights are found using the least-squares method, we have

l∑

k=1

e2
i,k ≤

l∑

k=1

ξ2
i,k

Also, notice that,

l∑

k=1

W̄ T
i θ

T
i,kθi,kW̄i =

l∑

k=1

(ei,k − ξi,k)2

Then, under Assumption 5.2.1, it follows that

¯|Wi|2 ≤
4|Ξi,l|2
lδ

=
4

δ
max
1≤k≤l

ξ2
i,k.

Therefore, given any arbitrary ε > 0, we can find N10 > 0 and N20 > 0, such that

when N1 > N10 and N2 > N20, we have

|V̂i(x)− Ṽi(x)|

≤
N1∑

j=1

|ci,j − ĉi,j||φj(x)|+
∞∑

j=N1+1

|ci,jφj(x)|

≤ ε

2
+
ε

2
= ε, ∀x ∈ Ω. (5.22)
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Similarly, |ûi+1(x)− ũi+1(x)| ≤ ε. The proof is complete.

We now prove Theorem 5.2.1 by induction:

1) If i = 0 we have Ṽ0(x) = V0(x), and ũ1(x) = u1(x). Hence, the convergence can

directly be proved by Lemma A.1.

2) Suppose for some i > 0, we have limN1,N2→∞ V̂i−1(x) = Vi−1(x), limN1,N2→∞ ûi(x) =

ui(x), ∀x ∈ Ω. By definition, we have

|Vi(x(t))− Ṽi(x(t))|

= r|
∫ ∞

t

[
ûi(x)2 − ui(x)2

]
dt|

+ 2r|
∫ ∞

t

ui+1(x) [ûi(x)− ui(x)] dt|

+ 2r|
∫ ∞

t

[ũi+1(x)− ui+1(x)] v̂idt|, ∀x ∈ Ω.

By the induction assumptions, we know

lim
N1,N2→∞

∫ ∞

t

[
ûi(x)2 − ui(x)2

]
dt = 0 (5.23)

lim
N1,N2→∞

∫ ∞

t

ui+1(x) [ûi(x)− ui(x)] dt = 0 (5.24)

Also, by Assumption 5.2.1, we conclude

lim
N1,N2→∞

|ui+1(x)− ũi+1(x)| = 0 (5.25)

and

lim
N1,N2→∞

|Vi(x)− Ṽi(x)| = 0. (5.26)
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Finally, since

|V̂i(x)− Vi(x)| ≤ |Vi(x)− Ṽi(x)|+ |Ṽi(x)− V̂i(x)|

and by the induction assumption, we have

lim
N1,N2→∞

|Vi(x)− V̂i(x)| = 0. (5.27)

Similarly, we can show

lim
N1,N2→∞

|ui+1(x)− ûi(x)| = 0. (5.28)

The proof is thus complete.

Corollary 5.2.1. Assume V ∗(x) and u∗(x) exist. Then, under Assumptions 5.2.1

and 5.2.2, for any arbitrary ε > 0, there exist integers i∗ > 0, N∗∗1 > 0 and N∗∗2 > 0,

such that

|
N1∑

j=1

ĉi∗,jφj(x)− V ∗(x)| ≤ ε, (5.29)

|
N2∑

j=1

ŵi∗,jφj(x)− u∗(x)| ≤ ε, (5.30)

for all x ∈ Ω, if N1 > N∗∗1 , and N2 > N∗∗2 .

Proof. By Theorem 6.1.1, there exists i∗ > 0, such that

|Vi∗(x)− V ∗(x)| ≤ ε

2
, (5.31)

|ui∗+1(x)− u∗(x)| ≤ ε

2
, ∀x ∈ Ω. (5.32)

By Theorem 5.2.1, there exist N∗∗1 > 0 and N∗∗2 > 0, such that for all N1 > N∗∗1

76



and N2 > N∗∗2 ,

|
N1∑

j=1

ĉi∗,jφj(x)− Vi∗(x)| ≤ ε

2
, (5.33)

|
N2∑

j=1

ŵi∗,jφj(x)− ui∗+1(x)| ≤ ε

2
, ∀x ∈ Ω. (5.34)

The corollary is thus proved by using the triangle inequality.

5.2.2 Robust redesign

In the presence of the dynamic uncertainty, we redesign the approximated optimal

control policy so as to achieve robust stability. The proposed method is an integration

of optimal control theory [99] with the gain assignment technique [83], [129]. To begin

with, let us make the following assumptions.

Assumption 5.2.3. There exists a function α of class K∞, such that for i = 0, 1, · · · ,

α(|x|) ≤ Vi(x), ∀x ∈ Rn. (5.35)

In addition, assume there exists a constant ε > 0 such that Q(x)− ε2|x|2 is a positive

definite function.

Notice that, we can also find a class K∞ function ᾱ, such that for i = 0, 1, · · · ,

Vi(x) ≤ ᾱ(|x|), ∀x ∈ Rn. (5.36)

Assumption 5.2.4. Consider (5.8). There exist functions λ, λ̄ ∈ K∞, κ1, κ2, κ3 ∈ K,

and positive definite functions W and κ4, such that for all w ∈ Rp and x ∈ Rn, we
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have

λ(|w|) ≤ W (w) ≤ λ̄(|w|), (5.37)

|∆(w, x)| ≤ max{κ1(|w|), κ2(|x|)}, (5.38)

together with the following implication:

W (w) ≥ κ3(|x|)⇒ ∇W (w)∆w(w, x) ≤ −κ4(w). (5.39)

Assumption 6.6.1 implies that the w-system (5.8) is input-to-state stable (ISS)

[149], [151] when x is considered as the input.

Now, consider the following type of control policy

uro(x) =
[
1 +

r

2
ρ2(|x|2)

]
ûi∗+1(x) (5.40)

where i∗ > 0 is a sufficiently large integer as defined in Corollary 5.2.1, ρ is a smooth,

non-decreasing function, with ρ(s) > 0 for all s ≥ 0. Notice that uro can be viewed

as a robust redesign of the approximated optimal control policy ûi∗+1.

As in [80], let us define a class K∞ function γ by

γ(s) =
1

2
ερ(s2)s, ∀s ≥ 0. (5.41)

In addition, define

ero(x) =
r

2
ρ2(|x|2) [ûi∗+1(x)− ui∗+1(x)]

+ûi∗+1(x)− ui∗(x). (5.42)
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Theorem 5.2.2. Under Assumptions 5.2.3 and 6.6.1, suppose

γ > max{κ2, κ1 ◦ λ−1 ◦ κ3 ◦ α−1 ◦ ᾱ}, (5.43)

and the following implication holds for some constant d > 0:

0 < Vi∗(x) ≤ d⇒ |ero(x)| < γ(|x|). (5.44)

Then, the closed-loop system composed of (5.8), (5.9), and (5.40) is asymptotically

stable at the origin. In addition, there exists σ ∈ K∞, such that Ωi∗ = {(w, x) :

max [σ(Vi∗(x)),W (w)] ≤ σ(d)} is an estimate of the region of attraction of the closed-

loop system.

Proof. Define

ēro(x) =





ero(x), Vi∗(x) ≤ d

0, Vi∗(x) > d
(5.45)

and

u(x) = ui∗(x) +
r

2
ρ2(|x|2)ui∗+1(x) + ēro(x). (5.46)

Then, along the solutions of (5.9), by completing the squares, we have

V̇i∗ ≤ −Q(x) +
1

ρ2(|x|2)
(∆ + ēro(x))2

= −(Q(x)− ε2|x|2)− 4γ2 − (∆ + ēro(x))2

ρ2(|x|2)

≤ −Q0(x)− 4
γ2 −max{κ2

1(|w|), κ2
2(|x|), ē2

ro(|x|)}
ρ2(|x|2)

where Q0(x) = Q(x)− ε2|x|2 is a positive definite function of x.
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Therefore, under Assumptions 5.2.3, 6.6.1 and the gain condition (5.43), we have

the following implication:

Vi∗(x) ≥ ᾱ ◦ γ−1 ◦ κ1 ◦ λ−1 (W (w))

⇒ |x| ≥ γ−1 ◦ κ1 ◦ λ−1 (W (w))

⇒ γ (|x|) ≥ κ1 (|w|) (5.47)

⇒ γ (|x|) ≥ max{κ1 (|w|) , κ2 (|x|) , ēro (|x|)}

⇒ V̇i∗(x) ≤ −Q0(x).

Also, under Assumption 6.6.1, we have

W (w) ≥ κ3 ◦ α−1(Vi∗(x))

⇒ W (w) ≥ κ3(|x|)

⇒ ∇W (w)∆w(w, x) ≤ −κ4(|w|). (5.48)

Finally, under the gain condition (5.43), it follows that

γ(s) > κ1 ◦ λ−1 ◦ κ3 ◦ α−1 ◦ ᾱ(s)

⇒ γ ◦ ᾱ−1(s′) > κ1 ◦ λ−1 ◦ κ3 ◦ α−1(s′) (5.49)

⇒ s′ > ᾱ ◦ γ−1 ◦ κ1 ◦ λ−1 ◦ κ3 ◦ α−1(s′)

where s′ = ᾱ(s). Hence, the following small-gain condition holds:

[
ᾱ ◦ γ−1 ◦ κ1 ◦ λ−1

]
◦
[
κ3 ◦ α−1(s)

]
< s, ∀s > 0. (5.50)

Denoting χ1 = ᾱ◦γ−1 ◦κ1 ◦λ−1, and χ2 = κ3 ◦α−1, by Theorem 9.2.1, the system

composed of (5.8), (5.9), (5.46) is globally asymptotically stable at the origin.
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In addition, by Theorem 9.2.1, there exists a continuously differentiable class K∞
function σ(s), such that the set

Ωi∗ = {(w, x) : max [σ(Vi∗(x)),W (w)] ≤ σ(d)} (5.51)

is an estimate of the region of attraction of the closed-loop system.

The proof is thus complete.

Remark 5.2.2. In the absence of the dynamic uncertainty (i.e., ∆ = 0 and the w-

system is absent), the control policy (5.40) can be replaced by ûi∗+1(x), which is an

approximation of the optimal control policy u∗(x) that minimizes the following cost

J(x0, u) =

∫ ∞

0

[
Q(x) + ru2

]
dt, x(0) = x0. (5.52)

Remark 5.2.3. It is of interest to note that the constant d in (5.44) can be chosen

arbitrarily large. So, the proposed control scheme solves the semi-global stabilization

problem [161].

5.2.3 The RADP Algorithm

The RADP algorithm is given in Algorithm 5.2.1, and a graphical illustration is

provided in Figure 5.1.
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Algorithm 5.2.1 RADP Algorithm

1. Let (w(0), x(0)) ∈ Ωi∗ ⊂ Ω0, employ the initial control policy (5.17) and collect
the system state and input information. Let i← 0.

2. Solve ĉi,j and ŵi,j from (5.15).

3. Let i← i+ 1, and go to Step 2, until

N1∑

j=1

|ĉi,j − ĉi−1,j|2 ≤ ε1 (5.53)

where the constant ε1 > 0 is a sufficiently small predefined threshold.

4. Terminate the exploration noise e.

5. If (w(t), x(t)) ∈ Ωi∗ , apply the approximate robust optimal control policy (5.40).

Ω0

Ωi∗

a

b

c

Figure 5.1: Illustration of Algorithm 5.2.1. a. The initial stabilizing control policy
is employed, and online information of state variables of the x-subsystem, the input
signal u, and the output of the dynamic uncertainty is utilized to approximate the
optimal cost and the optimal control policy. b. The exploration noise is terminated
after convergence to the optimal control policy is attained. c. The robust optimal
control policy is applied as soon as the system trajectory enters the invariant set Ωi∗ .
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5.3 RADP with unmatched dynamic uncertainty

In this section, we extend the RADP methodology to nonlinear systems with un-

matched dynamic uncertainties. To begin with, consider the system:

ẇ = ∆w(w, x) (5.54)

ẋ = f(x) + g(x) [z + ∆(w, x)] (5.55)

ż = f1(x, z) + u+ ∆1(w, x, z) (5.56)

where [xT , z]T ∈ Rn×R is the measured component of the state available for feedback

control; w, u, ∆w, f , g, and ∆ are defined in the same way as in (5.8)-(5.9); f1 :

Rn × R → R and ∆1 : Rp × Rn × R → R are locally Lipschitz functions and are

assumed to be unknown.

Assumption 5.3.1. There exist class K functions κ5, κ6, κ7, such that the following

inequality holds:

|∆1(w, x, z)| ≤ max{κ5 (|w|) , κ6 (|x|) , κ7 (|z|)}. (5.57)

5.3.1 Online learning

Let us define a virtual control policy ξ = uro, where uro is the same as in (5.40).

Then, a state transformation can be performed as ζ = z − ξ. Along the trajectories

of (5.55)-(5.56), it follows that

ζ̇ = f̄1(x, z) + u+ ∆1 − ḡ1(x)∆ (5.58)
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where f̄1(x, z) = f1(x, z)− ∂ξ
∂x
f(x)− ∂ξ

∂x
g(x)z, and ḡ1(x) = ∂ξ

∂x
g(x). By approximation

theory [126], f̄1(x, z) and ḡ1(x) can be approximated by:

f̂1(x, z) =

N3∑

j=1

ŵf,jψj(x, z), (5.59)

ĝ1(x) =

N4−1∑

j=0

ŵg,jφj(x) (5.60)

where {ψj(x, z)}∞j=1 is a sequence of linearly independent basis functions on some

compact set Ω1 ∈ Rn+1 containing the origin as its interior, φ0(x) ≡ 1, ŵf,j and ŵg,j

are constant weights to be trained. As in the matched case, a similar assumption on

the initial control policy is given as follows.

Assumption 5.3.2. The closed-loop system composed of (5.54)-(5.56), and

u = ū0(x, z) + e (5.61)

is ISS when e, the exploration noise, is considered to be the input.

Under Assumption 5.3.2, we can find an invariant set Ω1,0 for the closed-loop

system composed of (5.54)-(5.56) and (5.61), and approximate the unknown functions

on the set

Ω1 = {(x, z) : ∃w, s.t.(w, x, z) ∈ Ω1,0}. (5.62)

Then, we give the following two-phase learning scheme.
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Phase-one learning

Similarly as in (5.15), to approximate the virtual control input ξ for the x-subsystem,

we solve the weights ĉi,j and ŵi,j using least-squares method from

N1∑

j=1

ĉi,j
[
φj(x(t′k+1))− φj(x(t′k))

]

= −
∫ t′k+1

t′k

2r

N2∑

j=1

ŵi,jφj(x)ṽidt (5.63)

−
∫ t′k+1

t′k

[
Q(x) + rû2

i (x)
]
dt+ ẽi,k

where ṽi = z + ∆ − ûi, and {t′k}lk=0 is a strictly increasing sequence with l > l0 a

sufficiently large integer, and ẽi,k is the approximation error.

Phase two learning

To approximate the unknown functions f̄1 and ḡ1, The constant weights can be solved,

in the sense of least-squares, from

1

2
ζ2(t′k+1)− 1

2
ζ2(t′k)

=

∫ t′k+1

t′k

[
N3∑

j=1

ŵf,jψj(x, z)−
N4−1∑

j=0

ŵg,jφj(x)∆

]
ζdt

+

∫ t′k+1

t′k

(u+ ∆1)ζdt+ ēk (5.64)

where ēk denotes the approximation error. Similarly as in the previous section, let us

introduce the following assumption:

Assumption 5.3.3. There exist l1 > 0 and δ1 > 0, such that for all l ≥ l1, we have

1

l

l∑

k=0

θ̄Tk θ̄k ≥ δ1IN3+N4 (5.65)

85



where

θ̄Tk =




∫ t′k+1

t′k
ψ1(x, z)ζdt

∫ t′k+1

t′k
ψ2(x, z)ζdt

...
∫ t′k+1

t′k
ψN3(x, z)ζdt

∫ t′k+1

t′k
φ0(x)∆ζdt

∫ t′k+1

t′k
φ1(x)∆ζdt

...
∫ t′k+1

t′k
φN4−1(x)∆ζdt




∈ RN3+N4 .

Theorem 5.3.1. Consider (x(0), z(0)) ∈ Ω1. Then, under Assumption 5.3.3 we have

lim
N3,N4→∞

f̂(x, z) = f̄1(x, z), (5.66)

lim
N3,N4→∞

ĝ(x) = ḡ1(x), ∀(x, z) ∈ Ω1. (5.67)

5.3.2 Robust redesign

Next, we study the robust stabilization of the system (5.54)-(5.56). To this end, let

κ8 be a function of K such that

κ8(|x|) ≥ |ξ(x)|, ∀x ∈ Rn. (5.68)

Then, Assumption 5.3.1 implies

|∆1| ≤ max{κ5 (|w|) , κ6 (|x|) , κ7 (|z|)}

≤ max{κ5 (|w|) , κ6 (|x|) , κ7 (|ξ|+ κ8(|x|))}

≤ max{κ5 (|w|) , κ9 (|X1|)}
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where κ9(s) = max{κ6, κ7 ◦ κ8 ◦ (2s), κ7 ◦ (2s)}, ∀s ≥ 0. In addition, we denote

κ̃1 = max{κ1, κ5}, κ̃2 = max{κ2, κ9}, γ1(s) = 1
2
ερ(1

2
s2)s, and

Ui∗(X1) = Vi∗(x) +
1

2
ζ2. (5.69)

Notice that, under Assumptions 5.2.3 and 6.6.1, there exist ᾱ1, α1 ∈ K∞, such that

α1(|X1|) ≤ Ui∗(X1) ≤ ᾱ1(|X1|).

The control policy can be approximated by

uro1 = −f̂1(x, z) + 2rûi∗+1(x)

− ĝ
2(x)ρ2

1(|X1|2)ζ

4
− ε2ζ (5.70)

−ρ
2
1(|X1|2)ζ

4
− ε2ρ2(ζ2)ζ

2ρ2(|x|2)

where X1 = [xT , ζ]T , and ρ1(s) = 2ρ(1
2
s).

Next, define the approximation error as

ero1(X1) = −f̄1(x, z) + f̂1(x, z)

+2r [ui∗+1(x)− ûi∗+1(x)]

− [ḡ2
1(x)− ĝ2

1(x)] ρ2
1(|X1|2)ζ

4
(5.71)

Then, the conditions for asymptotic stability are summarized in the following Theo-

rem:

Theorem 5.3.2. Under Assumptions 5.2.3, 6.6.1, and 5.3.1, if

γ1 > max{κ̃2, κ̃1 ◦ λ−1 ◦ κ3 ◦ α−1
1 ◦ ᾱ1}, (5.72)
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and if the following implication holds for some constant d1 > 0:

0 < Ui∗(X1) ≤ d1 ⇒ max{|ero1(X1)|, |ero(x)|} < γ1(|X1|),

then the closed-loop system comprised of (5.54)-(5.56), and (5.70) is asymptotically

stable at the origin. In addition, there exists σ1 ∈ K∞, such that

Ω1,i∗ = {(w,X1) : max [σ1(Ui∗(X1)),W (w)] ≤ σ1(d1)}

is an estimate of the region of attraction.

Proof. Define

ēro1(X1) =





ero1(X1), Ui∗(X1) ≤ d1,

0, Ui∗(X1) > d1,

¯̄ero(x) =





ero(x), Ui∗(X1) ≤ d1,

0, Ui∗(X1) > d1,

Along the solutions of (5.54)-(5.56) with the control policy

u = −f̄1(x, z) + 2rûi∗+1(x)− ḡ2(x)ρ2
1(|X1|2)ζ

4

−ρ
2
1(|X1|2)ζ

4
− ε2ρ2(ζ2)ζ

2ρ2(|x|2)
− ε2ζ − ēro1(X1),
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it follows that

U̇i∗ ≤ −Q0(x)− 1

2
ε2ζ2

−γ
2
1(|X1|)−max{κ̃2

1(|w|), κ̃2
2(|X1|), ¯̄e2

ro(x)}
1
4
ρ2(|x|2)

−γ
2
1(|X1|)−max{κ̃2

1(|w|), κ̃2
2(|X1|), ¯̄e2

ro(x)}
1
4
ρ2

1(|X1|2)

−γ
2
1(|X1|)−max{κ̃2

1(|w|), κ̃2
2(|X1|), ē2

ro1(X1)}
1
4
ρ2

1(|X1|2)

As a result,

Ui∗(X1) ≥ ᾱ1 ◦ γ−1
1 ◦ κ̃1 ◦ λ−1(W (w))

⇒ U̇i∗ ≤ −Q0(x)− 1
2
ε2|ζ|2.

The rest of the proof follows the same reasoning as in the proof of Theorem

5.2.2.

Remark 5.3.1. In the absence of the dynamic uncertainty (i.e., ∆ = 0, ∆1 = 0 and

the w-system is absent), the smooth functions ρ and ρ1 can all be replaced by 0, and

the system becomes

Ẋ1 = F1(X1) +G1uo1 (5.73)

where F1(X1) =



f(x) + g(x)ζ + g(x)ξ

−∇Vi∗(x)Tg(x)


, G1 =




0

1


, and uo1 = −ε2ζ2. As a

result, it can be concluded that the control policy u = uo1 is an approximate optimal

control policy with respect to the cost functional

J1(X1(0);u) =

∫ ∞

0

[
Q1 (x, ζ) +

1

2ε2
u2

]
dt (5.74)
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with X1(0) = [xT0 , z0 − ui∗(x0)]T and Q1 (x, ζ) = Q (x) + 1
4r

[
∇Vi∗(x)Tg(x)

]2
+ ε2

2
ζ2.

Remark 5.3.2. Like in the matched case, by selecting large enough d1 in Theorem

5.3.2, semi-global stabilization is achieved.

5.3.3 The RADP algorithm with unmatched dynamic uncer-

tainty

The RADP algorithm with unmatched dynamic uncertainty is given in Algorithm

5.3.1.

Algorithm 5.3.1 RADP Algorithm

1. Let (w(0), x(0), z(0)) ∈ Ω1,i∗ ⊂ Ω1,0, employ the initial control policy (5.61) and
collect the system state and input information. Let i← 0.

2. Solve ĉi,j and ŵi,j from (5.63).

3. Let i← i+ 1, and go to Step 2, until

N1∑

j=1

|ĉi,j − ĉi−1,j|2 ≤ ε1 (5.75)

where the constant ε1 > 0 is a sufficiently small predefined threshold.

4. Solve ŵf,j and ŵg,j from (5.64).

5. Terminate the exploration noise e.

6. If (w(t), x(t), z(t)) ∈ Ω1,i∗ , apply the approximate robust optimal control policy
(5.70).

5.4 Numerical examples

In this section, we apply the proposed online RADP schemes to the design of robust

optimal control policies for a jet engine and a one-machine power system.
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5.4.1 Jet engine

Consider the following dynamic model for jet engine surge and stall [119], [95] de-

scribed by

Φ̇ = −Ψ + ΨC(Φ)− 3ΦR (5.76)

Ψ̇ =
1

β2
(Φ− ΦT (Ψ)) (5.77)

Ṙ = σR
(
1− Φ2 −R

)
(5.78)

where Φ is the scaled annulus-averaged flow, Ψ is the plenum pressure rise, and

R > 0 is the normalized rotating stall amplitude. Functions ΦC(Φ) and ΦT (Ψ) are

the compressor and throttle characteristics, respectively. According to [119], ΦT is

assumed to take the form of

ΦT (Ψ) = γ
√

Ψ− 1 (5.79)

and ΨC(Φ) is assumed to be satisfying ΨC(0) = 1+ΨC0 with ΨC0 a constant describing

the shut-off pressure rise. The equilibrium of the system is

Re = 0,Φe = 1,Ψe = ΨC(Φe) = Ψe
C0 + 2.

Performing the following state and input transformations [95]

φ = Φ− Φe (5.80)

ψ = Ψ−Ψe (5.81)

u =
1

β2

[
φ− β2γ

√
ψ + ΨC0 + 2 + 2

]
, (5.82)
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system (5.76)-(5.78) can be converted to

Ṙ = −σR2 − σR
(
2φ+ φ2

)
, R(0) ≥ 0 (5.83)

φ̇ = ΨC(φ+ 1)− 2−ΨC0

− (ψ + 3Rφ+ 3R) (5.84)

ψ̇ = u (5.85)

Notice that this system is in the form of (5.54)-(5.56), if we choose w = R, x = φ,

and z = ψ. The function ΨC and the constant σ are assumed to be uncertain, but

satisfy

−1

2
φ3 − 2φ2 ≤ ΨC(s+ 1)− 2−ΨC0 ≤ −

1

2
φ3 (5.86)

and 0.1 < σ < 1. The initial stabilizing policy and the initial virtual control policies

are selected to be u = 6φ− 2ψ and ψ = 3φ, with V (R, φ, ψ) = R+ 1
2
φ2 + 1

2
(ψ − 3φ)2

a Lyapunov function of the closed-loop system.

For simulation purpose, we set σ = 0.3, β = 0.702, ΨC0 = 1.7, and ΨC(φ + 1) =

ΨC0 + 2 − 3
2
φ2 − 1

2
φ3 [119]. We set Q(φ) = 4(φ2 + φ3 + φ4), and r = 1. For robust

redesign, we set ρ(s) = 0.01s. The basis functions are selected to be polynomials

of φ and ψ with order less or equal to four. The exploration noise is set to be

e = 10 cos(0.1t).

The RADP learning started from the beginning of the simulation and finished at

t = 10s, when the control policy is updated after six iterations and the convergence

criterion (5.75) in Algorithm 1 with ε1 = 10−6 is satisfied. The approximated cost

functions before and after phase-one learning are shown in Figure 5.2. The plots of

state trajectories of the closed-loop system are shown in Figures 5.3-5.5.
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Figure 5.2: Approximated cost function.

5.4.2 One-machine infinite-bus power system

The power system considered in this chapter is a synchronous generator connected to

an infinite-bus as shown in Figure 5.6. A model for the generator with both excitation

and power control loops can be written as follows [97]:

δ̇ = ω (5.87)

ω̇ = − D

2H
ω +

ω0

2H
(Pm − Pe) (5.88)

Ė ′q = − 1

T ′d
E ′q +

1

Td0

xd − x′d
x′dΣ

Vs cos δ +
1

Td0

Ef (5.89)

Ṗm = − 1

TG
Pm −KGω + u (5.90)

where δ, ω, Pe, Pm, E ′q, and u are the incremental changes of the rotor angle, the

relative rotor speed, the active power delivered to the infinite-bus, the mechanical
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Figure 5.3: Trajectory of the normalized rotating stall amplitude.

input power, the EMF in the quadrature axis, and the control input to the system,

respectively; xd, xT , and xL are the reactance of the direct axis, the transformer, and

the transmission line, respectively. x′d is the direct axis transient reactance, KG is

the regulation constant, H is the inertia constant, and T ′d0 is the direct axis transient

short-circuit time constant, Vs is the voltage on the infinite-bus.

Define the following transformations

w =
Vs
xdΣ

(
E ′q − Eq0

)
(5.91)

x1 = δ − δ0 (5.92)

x2 = ω (5.93)

z = Pm − P0 (5.94)

where constants δ0, P0, and Eq0 denote the steady-state values of the rotor angle, the
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Figure 5.4: Trajectory of the mass flow.

mechanical power input, and the EMF, respectively.

This system can be converted to

ẇ = −a1w + a2 sin(
x1

2
+ a3) sin

x1

2
(5.95)

ẋ1 = x2 (5.96)

ẋ2 = −b1x2 − b2 cos(
x1

2
+ a3) sin

x1

2

+b3 [z − w sin(x1 + a3)] (5.97)

ż = −c1z − c2x2 + u (5.98)

where a1 = 1
T ′d

, a2 =
xd−x′d
Td0

V 2
s

x′dΣxdΣ
, a3 = δ0, b1 = D

2H
, b2 = ω0

H
Vs
xdΣ

Eq0 , b3 = ω0

2H
, c1 = 1

TG
,

c2 = KG.

For simulation purpose, the parameters are specified as follows: D = 5, H = 4,

ω0 = 314.159 rad/s, xT = 0.127, xL = 0.4853, xd = 1.863, x′d = 0.257, T ′d0 = 0.5s,
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Figure 5.5: Trajectory of the plenum pressure rise.

δ0 = 1.2566 rad, Vs = 1p.u., TT = 2s, KG = 1, KT = 1, TG = 0.2s. In addition,

notice that xds = xT + xL + xd, x
′
ds = xT + xL + x′d. We set Q(x1, x2) = 10x2

1 + x2
2,

r = 1, and we pick ρ(s) = 1 for robust redesign. The basis functions are selected to

be polynomials of x1, x2, and z with order less or equal to four.

Suppose the bounds of the parameters are given as 0.5 < a1 ≤ 1, 0 < a2, 1.5,

0 < a3 ≤ 1, 0.5 < b1 ≤ 1, 0 < b2 ≤ 150, 0 < b3 ≤ 50, 0 < c1 ≤ 1, and 0 < c2 ≤ 0.1.

Then, we select the initial control policy to be u = −x1, with V (w, x1, x2, z) =

w2 + x2
1 + x2

2 + z2 the Lyapunov function of the closed-loop system. The exploration

noise is set to be e = 0.001 sin(t). The initial virtual control policy is z = −x1. The

algorithm stopped after nine iterations, when the stopping criterion in (5.75) with

ε1 = 0.01 is satisfied. The RADP learning is finished within two seconds. The initial

cost function and the cost function we obtained from phase-one learning are shown

in Figure 5.11.

96



TransformerGenerator Transmission lines Infinite-bus

Vs

xL

xTxd

Figure 5.6: One-machine infinite-bus synchronous generator with speed governor

It is worth pointing out that, attenuating the oscillation in the power frequency is

an important issue in power system control. From the simulation results shown in Fig-

ures 5.7-5.10, we see that the post-learning performance of the system is remarkably

improved and the oscillation is attenuated.
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Figure 5.7: Trajectory of the dynamic uncertainty.
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Figure 5.8: Trajectory of the deviation of the rotor angle.

5.5 Conclusions

In this chapter, neural-network-based robust and adaptive optimal control design has

been studied for nonlinear systems with dynamic uncertainties. Both the matched and

the unmatched cases are studied. We have presented for the first time a recursive, on-

line, adaptive optimal controller design when dynamic uncertainties, characterized by

input-to-state stable systems with unknown order and states/dynamics, are taken into

consideration. We have achieved this goal by integration of approximate/adaptive dy-

namic programming (ADP) theory and tools recently developed within the nonlinear

control community. Systematic RADP-based online learning algorithms have been

developed to obtain semi-globally stabilizing controllers with optimality properties.

The effectiveness of the proposed methodology has been validated by its application

to the robust optimal control policy designs for a jet engine and a one-machine power

system.
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Figure 5.9: Trajectory of the relative frequency.
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Figure 5.10: Trajectory of the deviation of the mechanical power.
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Figure 5.11: Approximated cost function.

100



Chapter 6

Global robust adaptive dynamic

programming via

sum-of-squares-programming

In the previous section, neural networks are employed to achieve online approximation

of the cost function and the control policy. Actually, neural networks are widely used

in the previous ADP architecture. However, although they can be used as universal

approximators [57], [124], there are at least two major limitations for ADP-based

online implementations. First, in order to approximate unknown functions with high

accuracy, a large number of basis functions comprising the neural network are usually

required. Hence, it may incur a huge computational burden for the learning system.

Besides, it is not trivial to specify the type of basis functions, when the target function

to be approximated is unknown. Second, neural network approximations generally

are effective only on some compact sets, but not in the entire state space. Therefore,

the resultant control policy may not provide global asymptotic stability for the closed-

loop system. In addition, the compact set, on which the uncertain functions of interest

are to be approximated, has to be carefully quantified before one applies the online
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learning method, such that stability can be assured during the learning process [75].

The main purpose of this chapter is to develop a novel RADP methodology to

achieve global and adaptive suboptimal stabilization of uncertain continuous-time

nonlinear system via online learning. As the first contribution of this chapter, an op-

timization problem, of which the solutions can be easily parameterized, is proposed

to relax the problem of solving the Hamilton-Jacobi-Bellman (HJB) equation. This

approach is similar to the relaxation method used in approximate dynamic program-

ming for Markov decision processes (MDPs) with finite state space [32], and more

generalized discrete-time systems [106, 178, 179, 137, 139, 153]. However, methods

developed in these papers cannot be trivially extended to the continuous-time set-

ting, or achieve global asymptotic stability of general nonlinear systems. The idea of

relaxation was also used in nonlinear H∞ control, where Hamilton-Jacobi inequalities

are used for nonadaptive systems [52, 169].

The second contribution of the chapter is to propose a relaxed policy iteration

method. For polynomial systems, we formulate each iteration step of the proposed

policy iteration as a sum of squares (SOS) program [125, 17], and give its equivalent

semidefinite programming (SDP) problem [170]. For nonlinear functions that cannot

be parameterized using a basis of polynomials, a less conservative sufficient condition

is derived to decide their non-negativity by examining the coefficients. Thus, the

proposed policy iteration is formulated as a more general SDP problem. It is worth

pointing out that, different from the inverse optimal control design [96], the proposed

method finds directly a suboptimal solution to the original optimal control problem.

The third contribution is an online learning method that implements the proposed

iterative schemes using only the real-time online measurements, when the perfect sys-

tem knowledge is not available. This method can be regarded as a nonlinear variant

of our recent work for continuous-time linear systems with completely unknown sys-

tem dynamics [68]. This method distinguishes from previously known nonlinear ADP
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methods in that the neural network approximation is avoided for computational bene-

fits and that the resultant control policy is globally stabilizing, instead of semiglobally

or locally stabilizing.

The fourth contribution of this chapter is the robust redesign of the approximate

suboptimal control policy, such that the overall system can be globally asymptotically

stable in the presence of dynamic uncertainties. As in the previous chapter, the key

strategy is to integrate the idea of gain assignment [83, 129] and the Lyapunov-based

small-gain theorem [80] in nonlinear control theory.

The remainder of this chapter is organized as follows. 6.1 formulates the problem

and introduces some basic results in nonlinear optimal control and nonlinear optimiza-

tion. Section 6.2 relaxes the problem of solving an HJB equation to an optimization

problem. Section 6.3 develops a relaxed policy iteration technique for polynomial

systems based on sum of squares (SOS) programming [17]. Section 6.4 develops an

online learning method for applying the proposed policy iteration, when the system

dynamics are not known exactly. Section 6.5 extends the proposed method to deal

with more generalized nonlinear systems. Section 6.6 develops a way to redesign the

suboptimal control policy. Section 6.7 examines three numerical examples to validate

the efficiency and effectiveness of the proposed method. Section 6.8 gives concluding

remarks.

6.1 Problem formulation and preliminaries

In this section, we first formulate the control problem to be studied in the chapter.

Then, we introduce some basic tools in nonlinear optimal control and optimization

theories, based on which our main results in this chapter will be developed.
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6.1.1 Problem formulation

Consider the nonlinear system

ẋ = f(x) + g(x)u (6.1)

where x ∈ Rn is the system state, u ∈ Rm is the control input, f(x) and g(x) are

locally Lipschitz functions with f(0) = 0.

In conventional optimal control theory [103], the common objective is to find a

control policy u that minimizes certain performance index. In this chapter, it is

specified as follows.

J(x0, u) =

∫ ∞

0

r(x(t), u(t))dt, x(0) = x0 (6.2)

where r(x, u) = Q(x) + uTRu, with Q(x) a positive definite function, and R is a

symmetric positive definite matrix. Notice that, the purpose of specifying r(x, u) in

this form is to guarantee that an optimal control policy can be explicitly determined,

if it exists.

Assumption 6.1.1. Consider system (6.1). There exist a function V0 ∈ P and a

feedback control policy u1, such that

L(V0(x), u1(x)) ≥ 0, ∀x ∈ Rn (6.3)

where, for any V ∈ C1 and u ∈ Rm,

L(V, u) = −∇V T (x)(f(x) + g(x)u)− r(x, u). (6.4)

Under Assumption 6.1.1, the closed-loop system composed of (6.1) and u = u1(x)

is globally asymptotically stable at the origin, with a well-defined Lyapunov function
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V0. With this property, u1 is also known as an admissible control policy [6], implying

that the cost J(x0, u1) is finite, ∀x0 ∈ Rn. Indeed, integrating both sides of (6.3)

along the trajectories of the closed-loop system composed of (6.1) and u = u1(x) on

the interval [0,+∞), it is easy to show that

J(x0, u1) ≤ V0(x0), ∀x0 ∈ Rn. (6.5)

6.1.2 Optimality and stability

Here, we recall a basic result connecting optimality and global asymptotic stability

in nonlinear systems [141]. To begin with, let us give the following assumption.

Assumption 6.1.2. There exists V o ∈ P, such that the Hamilton-Jacobi-Bellman

(HJB) equation holds

H(V o) = 0 (6.6)

where

H(V ) = ∇V T (x)f(x) +Q(x)− 1

4
∇V T (x)g(x)R−1gT (x)∇V (x).

Under Assumption 6.1.2, it is easy to see that V o is a well-defined Lyapunov

function for the closed-loop system comprised of (6.1) and

uo(x) = −1

2
R−1gT (x)∇V o(x). (6.7)

Hence, this closed-loop system is globally asymptotically stable at x = 0 [86].

Then, according to [141, Theorem 3.19], uo is the optimal control policy, and the
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value function V o(x0) gives the optimal cost at the initial condition x(0) = x0, i.e.,

V o(x0) = min
u
J(x0, u) = J(x0, u

o), ∀x0 ∈ Rn. (6.8)

It can also be shown that V o is the unique solution to the HJB equation (9.8)

with V o ∈ P . Indeed, let V̂ ∈ P be another solution to (9.8). Then, by Theorem

3.19 in [141], along the solutions of the closed-loop system composed of (6.1) and

u = û = −1
2
R−1gT∇V̂ , it follows that

V̂ (x0) = V o(x0)−
∫ ∞

0

|uo − û|2Rdt, ∀x0 ∈ Rn. (6.9)

Finally, comparing (6.8) and (6.9), we conclude that V o = V̂ .

6.1.3 Conventional policy iteration

The above-mentioned result implies that, if there exists a class-P function which

solves the HJB equation (9.8), an optimal control policy can be obtained. However,

the nonlinear HJB equation (9.8) is almost impossible to be solved analytically in

general. As a result, numerical methods are developed to approximate the solution.

In particular, the following policy iteration method is widely used [136].

Algorithm 6.1.1 Conventional policy iteration

1: Policy evaluation: For i = 1, 2, · · · , solve for the cost function Vi(x) ∈ C1, with
Vi(0) = 0, from the following partial differential equation.

L(Vi(x), ui(x)) = 0. (6.10)

2: Policy improvement: Update the control policy by

ui+1(x) = −1

2
R−1gT (x)∇Vi(x). (6.11)

The following result is a trivial extension of [136, Theorem 4], in which g(x) is a

constant matrix and only stabilization over compact set is considered.
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Theorem 6.1.1. Suppose Assumptions 6.1.1 and 6.1.2 hold, and the solution Vi(x) ∈

C1 satisfying (6.10) exists, for i = 1, 2, · · · . Let Vi(x) and ui+1(x) be the functions

generated from (6.10) and (6.11). Then, the following properties hold, ∀i = 0, 1, · · · .

1) V o(x) ≤ Vi+1(x) ≤ Vi(x), ∀x ∈ Rn;

2) ui+1 is globally stabilizing;

3) J(x0, ui) is finite, ∀x0 ∈ Rn;

4) {Vi(x)}∞i=0 and {ui(x)}∞i=1 converge pointwise to V o(x) and uo(x), respectively.

Notice that finding the analytical solution to (6.10) is still non-trivial. Hence,

in practice, the solution is approximated using, for example, neural networks or

Galerkin’s method [6]. When the precise knowledge of f or g is not available, ADP-

based online approximation method can be applied to compute numerically the cost

functions via online data [172], [75].

In general, approximation methods can only give acceptable results on some com-

pact set in the state space, but cannot be used to achieve global stabilization. In

addition, in order to reduce the approximation error, huge computational complex-

ity is almost inevitable. These facts may affect the effectiveness of the previously

developed ADP-based online learning methods.

6.1.4 Semidefinite programming and sum-of-squares program-

ming

A standard semidefinite programming (SDP) problem can be formulated as the fol-

lowing problem of minimizing a linear function of a variable y ∈ Rn0 subject to a

linear matrix inequality.
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Problem 6.1.1 (Semidefinite programming [170]).

min
y

cTy (6.12)

F0 +

n0∑

i=1

yiFi ≥ 0 (6.13)

where c ∈ Rn0 is a constant column vector, and F0, F1, · · · , Fn0 ∈ Rm0×m0 are

n0 + 1 symmetric constant matrices.

SDPs can be solved using several commercial or non-commercial software pack-

ages, such as the Matlab-based solver CVX [48].

Definition 6.1.1 (Sum of squares [17]). A polynomial p(x) ∈ R[x]0,2d is a sum of

squares (SOS) if there exist q1, q2, · · · , qm0 ∈ R[x]0,d such that

p(x) =
m∑

i=1

q2
i (x). (6.14)

An SOS programming problem is a convex optimization problem of the following

form

Problem 6.1.2 (SOS programming [17]).

min
y

bTy (6.15)

s.t. pi(x; y) are SOS, i = 1, 2, · · · , k0 (6.16)

where pi(x; y) = ai0(x) +
∑n0

j=1 aij(x)yj, and aij(x) are given polynomials in R[x]0,2d.

In [17, p.74], it has been pointed out that SOS programs are in fact equivalent

to SDPs. Indeed, the constraints (6.16) are equivalent to the existence of symmetric

matrices Qi ≥ 0 satisfying

pi(x; y) = [x]T0,dQi [x]0,d , i = 1, 2, · · · , k0. (6.17)
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Then, by extending and matching the coefficients of (6.17), the equations (6.17)

reduce to linear equations between y and the entries of Qi. As a result, Problem 6.1.1

is equivalent to an SDP problem in the variables of y and all the distinct entries of

Qi. This equivalence implies that SOS programs can be reformulated and solved as

SDPs. The conversion from an SOS to an SDP can be performed either manually,

or automatically using, for example, the Matlab toolbox SOSTOOLS [128], YALMIP

[112], and Gloptipoly [53].

6.2 Suboptimal control with relaxed HJB equa-

tion

In general, it is extremely difficult to obtain the analytical solution to the HJB equa-

tion (9.8). Therefore, in this section we consider an auxiliary optimization problem,

which allows us to obtain a suboptimal solution to the minimization problem (9.7)

subject to (6.1). For simplicity, we will omit the arguments of functions whenever

there is no confusion in the context.

Problem 6.2.1 (Relaxed optimal control problem).

min
V

∫

Rn
s(x)V (x)dx (6.18)

s.t. H(V ) ≤ 0 (6.19)

V ∈ P (6.20)

where s(x) is a positive semidefinite function taking positive values only on some

predefined compact set Ω ⊂ Rn.

Remark 6.2.1. Notice that Problem 6.2.1 is called a relaxed problem of (9.8). Indeed,

if we restrict this problem by replacing the inequality constraint (6.19) with the equality

constraint (9.8), there will be only one feasible solution left and the objective function
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can thus be neglected. As a result, Problem 6.2.1 reduces to the problem of solving

(9.8).

Remark 6.2.2. The function s(x) can also be recognized as the state-relevance weight-

ing function [32]. It is easy to see that better approximation to the optimal cost func-

tion V o in a particular region of state space can be achieved by assigning relatively

higher weights to the region.

Some useful facts about Problem 6.2.1 are given as follows.

Theorem 6.2.1. Under Assumptions 6.1.1 and 6.1.2, the following hold.

1) Problem 6.2.1 has a nonempty feasible set.

2) Let V be a feasible solution to Problem 6.2.1. Then, the control policy

ū = −1

2
R−1gT∇V (6.21)

is globally stabilizing.

3) For any x0 ∈ Rn, an upper bound of the cost of the closed-loop system comprised

of (6.1) and (6.21) is given by V (x0), i.e.,

J(x0, ū) ≤ V (x0). (6.22)

4) Along the trajectories of the closed-loop system (6.1) and (6.21), the following

inequalities hold for any x0 ∈ Rn:

V (x0) +

∫ ∞

0

H(V (x(t)))dt ≤ V o(x0) ≤ V (x0). (6.23)

5) V o as defined in (6.8) is a global optimal solution to Problem 6.2.1.
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Proof. 1) Define u0 = −1

2
R−1gT∇V0. Then,

H(V0) = ∇V T
0 (f + gu0) + r(x, u0)

= ∇V T
0 (f + gu1) + r(x, u1)

+∇V T
0 g(u0 − u1) + |u0|2R − |u1|2R

= ∇V T
0 (f + gu1) + r(x, u1)− |u0 − u1|2R

≤ 0

Hence, V0 is a feasible solution to Problem 6.2.1.

2) To show global asymptotic stability, we only need to prove that V is a well-

defined Lyapunov function for the closed-loop system composed of (6.1) and (6.21).

Indeed, along the solutions of the closed-loop system, it follows that

V̇ = ∇V T (f + gū) = H(V )− r(x, ū) ≤ −Q(x)

Therefore, the system is globally asymptotically stable at the origin [86].

3) Along the solutions of the closed-loop system comprised of (6.1) and (6.21), we

have

V (x0) = −
∫ T

0

∇V T (f + gū)dt+ V (x(T ))

=

∫ T

0

[r(x, ū)−H(V )] dt+ V (x(T ))

≥
∫ T

0

r(x, ū)dt+ V (x(T )) (6.24)

By 2), lim
T→+∞

V (x(T )) = 0. Therefore, letting T → +∞, by (6.24) and (9.7), we

have

V (x0) ≥ J(x0, ū). (6.25)
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4) By 3), we have

V (x0) ≥ J(x0, ū) ≥ min
u
J(x0, ū) = V o(x0). (6.26)

Hence, the second inequality in (6.23) is proved.

On the other hand,

H(V ) = H(V )−H(V o)

= (∇V −∇V o)T (f + gū) + r(x, ū)− (∇V o)Tg(uo − ū)− r(x, uo)

= (∇V −∇V o)T (f + gū) + |ū− uo|2R

≥ (∇V −∇V o)T (f + gū)

Integrating the above equation along the solutions of the closed-loop system (6.1)

and (6.21) on the interval [0,+∞), we have

V (x0)− V o(x0) ≤ −
∫ ∞

0

H(V (x))dt. (6.27)

5) By 3), for any feasible solution V to Problem 6.2.1, we have V o(x) ≤ V (x). So,

∫

Rn
s(x)V o(x)dx ≤

∫

Rn
s(x)V (x)dx (6.28)

which implies that V o is a global optimal solution.

The proof is therefore complete.

Remark 6.2.3. A feasible solution V to Problem 6.2.1 may not necessarily be the

true cost function associated with the control policy ū defined in (6.21). However, by

Theorem 6.2.1, we see V can be viewed as an upper bound or an overestimate of the

actual cost, inspired by the concept of underestimator in [178]. Further, V serves as

a Lyapunov function for the closed-loop system and can be more easily parameterized
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than the actual cost function. For simplicity, V is still called the cost function, in the

remainder of the chapter.

6.3 SOS-based policy iteration for polynomial sys-

tems

The inequality constraint (6.19) contained in Problem 6.2.1 provides us the freedom

of specifying desired analytical forms of the cost function. However, solving (6.19) is

non-trivial in general, even for polynomial systems (see, for example, [28], [44], [121],

[147], [197]). Indeed, for any polynomial with degree no less than four, deciding its

non-negativity is an NP-hard problem [125]. Fortunately, due to the developments in

sum of squares (SOS) programming [17, 125], the computational burden can be sig-

nificantly reduced, if inequality constraints can be restricted to SOS constraints. The

purpose of this section is to develop a novel policy iteration method for polynomial

systems using SOS-based methods [17, 125].

6.3.1 Polynomial parametrization

To study polynomial systems, let us first give the following Assumption.

Assumption 6.3.1. There exist integers d > 0, d1 ≥ 0, and r > 0, such that

1. all entries of f(x) belong to R[x]1,d and all entries of g(x) belong to R[x]0,d1;

2. in addition to being positive definite, the weighting function Q(x) satisfies Q(x) ∈

R[x]2,2d;

3. there exist a nonlinear mappings V0 : Rn → R and a feedback control policy

u1 : Rn → Rm, such that V0 ∈ R[x]2,2r ∩ P, u1 ∈ R[x]m1,d, and L(V0, u1) is SOS;

and
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4. the inequality holds:

d ≥ (2r − 1) + d1. (6.29)

Remark 6.3.1. It is easy to see that, Assumption 6.3.1 holds only if Assumption

6.1.1 holds. In addition, under Assumption 6.3.1, we know that L(V0, u1) ∈ R[x]2,2d.

Indeed, by (6.29), it follows that L(V0, u1) ∈ R[x]2,max{(2r−1)+d+(d1+d),2d} = R[x]2,2d.

Remark 6.3.2. Notice that the inequality (6.29) can be assumed without loss of

generality. Indeed, if it does not hold, we can always find d̃ > max{d, (2r − 1) + d1}.

As a result, Assumption 6.3.1 holds with d replaced by d̃.

For notational simplicity, we denote the dimensions of [x]1,r, [x]1,d, [x]2,2r, and

[x]2,2d by nr, nd, n2r, and n2d, respectively. By [17], we know nr = (n+r
r ) − 1, nd =

(n+d
d )− 1, n2r = (n+2r

2r )− n− 1, and n2d = (n+2d
2d )− d− 1.

6.3.2 SOS-programming-based policy iteration

Now, we are ready to propose a relaxed policy iteration scheme. Similar as in other

policy-iteration-based iterative schemes, an initial globally stabilizing (and admissi-

ble) control policy has been assumed in Assumption 6.3.1.

Remark 6.3.3. The optimization problem (6.30)-(6.33) is a well defined SOS program

[17]. Indeed, the objective function (6.30) is linear in p, since for any V = pT [x]2,2r,

we have
∫
Rn s(x)V (x)dx = cTp, with c =

∫
Rn s(x)[x]2,2rdx. In addition, notice that

since the objective function is nonnegative, its optimal value must be finite.

Theorem 6.3.1. Under Assumptions 6.1.2 and 6.3.1, the following are true, for

i = 1, 2, · · · .

1) The SOS program (6.30)-(6.33) has a nonempty feasible set.
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Algorithm 6.3.1 SOS-based policy iteration

1: Policy evaluation: For i = 1, 2, · · · , solve for an optimal solution pi ∈ Rn2r to the
following optimization program, and denote Vi = pTi [x]2,2r.

min
p∈Rn2r

∫

Rn
s(x)V (x)dx (6.30)

s.t. V := pT [x]2,2r (6.31)

L(V, ui) ∈ Σ2,2d (6.32)

Vi−1 − V ∈ Σ2,2r (6.33)

where Σ2,2d and Σ2,2r denote the sets of all SOS polynomials in R[x]2,2d and
R[x]2,2r, respectively.

2: Policy improvement: Update the control policy by

ui+1 = −1

2
R−1gT∇Vi. (6.34)

Then, go to Step 1) with i replaced by i+ 1.

2) The closed-loop system comprised of (6.1) and u = ui is globally asymptotically

stable at the origin.

3) Vi ∈ P. In particular, the following inequalities hold:

V o(x0) ≤ Vi(x0) ≤ Vi−1(x0), ∀x0 ∈ Rn. (6.35)

4) There exists V ∗(x) satisfying V ∗(x) ∈ R[x]2,2r ∩ P, such that, for any x0 ∈ Rn,

lim
i→∞

Vi(x0) = V ∗(x0).

5) Along the solutions of the system (6.1) with

u∗ = −1

2
R−1gT∇V ∗, (6.36)

the following inequalities hold:

0 ≤ V ∗(x0)− V o(x0) ≤ −
∫ ∞

0

H(V ∗(x(t)))dt. (6.37)
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Proof. 1) We prove by mathematical induction.

i) Suppose i = 1, under Assumption 6.3.1, we know L(V0, u1) ∈ Σ2,2d. Hence,

V = V0 is a feasible solution to the problem (6.30)-(6.33).

ii) Let uj−1 ∈ R[x]m1,d, and V = Vj−1 be an optimal solution to the problem (6.30)-

(6.33) with i = j − 1 > 1. We show that V = Vj−1 is a feasible solution to the same

problem with i = j.

Indeed, by definition,

uj = −1

2
R−1gT∇Vj−1 ∈ R[x]m1,d,

and

L(Vj−1, uj) = −∇V T
j−1(f + guj)− r(x, uj)

= L(Vj−1, uj−1)−∇V T
j−1g(uj − uj−1) + uTj−1Ruj−1 − uTj Ruj

= L(Vj−1, uj−1) + |uj − uj−1|2R.

Under the induction assumption, we know Vj−1 ∈ R[x]2,2r, uj−1 ∈ R[x]m1,d, and

L(Vj−1, uj) ∈ Σ2,2d. Hence, L(Vj−1, uj) ∈ Σ2,2d. As a result, Vj−1 is a feasible solution

to the SOS program (6.30)-(6.33) with i = j.

2) Again, we prove by induction.

i) Suppose i = 1, under Assumption 6.3.1, u1 is globally stabilizing. Also, we can

show that V1 ∈ P . Indeed, for each x0 ∈ Rn with x0 6= 0, we have

V1(x0) ≥
∫ ∞

0

r(x, u1)dt > 0. (6.38)

By (6.38) and the constraint (6.33), under Assumption 6.1.2 it follows that

V o ≤ V1 ≤ V0. (6.39)
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Since both V o and V0 are assumed to belong to P , we conclude that V1 ∈ P .

ii) Suppose ui−1 is globally stabilizing, and Vi−1 ∈ P for i > 1. Let us show that

ui is globally stabilizing, and Vi ∈ P .

Indeed, along the solutions of the closed-loop system composed of (6.1) and u = ui,

it follows that

V̇i−1 = ∇V T
i−1(f + gui) = −L(Vi−1, ui)− r(x, ui) ≤ −Q(x).

Therefore, ui is globally stabilizing, since Vi−1 is a well-defined Lyapunov function

for the system. In addition, we have

Vi(x0) ≥
∫ ∞

0

r(x, ui)dt > 0, ∀x0 6= 0. (6.40)

Similarly as in (6.39), we can show

V o(x0) ≤ Vi(x0) ≤ Vi−1(x0), ∀x0 ∈ Rn, (6.41)

and conclude that Vi ∈ P .

3) The two inequalities have been proved in (6.41).

4) By 3), for each x ∈ Rn, the sequence {Vi(x)}∞i=0 is monotonically decreasing

with 0 as its lower bound. Therefore, the limit exists, i.e., there exists V ∗(x), such

that lim
i→∞

Vi(x) = V ∗(x). Let {pi}∞i=1 be the sequence such that Vi = pTi [x]2,2r. Then,

we know lim
i→∞

pi = p∗ ∈ Rn2r , and therefore V ∗ = p∗T [x]2,2r. Also, it is easy to show

V o ≤ V ∗ ≤ V0. Hence, V ∗ ∈ R[x]2,2r ∩ P .

5) By 4), we know

H(V ∗) = −L(V ∗, u∗) ≤ 0, (6.42)
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which implies that V ∗ is a feasible solution to Problem 6.2.1. Then, the inequalities

in (5) can be obtained by the fourth property in Theorem 6.2.1.

The proof is thus complete.

6.3.3 An equivalent SDP implementation

According to the equivalence between SOS programs and SDPs, the SOS-based policy

iteration can be reformulated as SDPs. Notice that we can always find two linear

mappings ι : Rn2r × Rm×nr → Rn2d and κ : Rn2r → Rm×nr , such that given p ∈ Rn2r

and K ∈ Rm×nr ,

ι(p,K)T [x]2,2d = L(pT [x]2,2r, K[x]1,2r−1) (6.43)

κ(p)T [x]1,2r−1 = −1

2
R−1gT∇(pT [x]2,2r) (6.44)

Then, by properties of SOS constraints [17], the polynomial ι(p,K)T [x]2,2d is SOS

if and only if there exists a symmetric and positive semidefinite matrix L ∈ Rnd×nd ,

such that

ι(p,K)T [x]2,2d = [x]T1,dL[x]1,d. (6.45)

Furthermore, there exist linear mappings MP : Rnr×nr → Rn2r and ML : Rnd×nd →

Rn2d , such that, for any vectors p ∈ Rn2r , l ∈ Rn2d , and symmetric matrices P ∈

Rnr×nr and L ∈ Rnd×nd , the following implications are true.

pT [x]2,2r = [x]T1,rP [x]1,r ⇐⇒ p = MP (P ) (6.46)

lT [x]2,2d = [x]T1,dL[x]1,d ⇐⇒ l = ML(L) (6.47)

Under Assumptions 6.1.2 and 6.3.1, the proposed policy iteration can be reformu-

lated as follows.
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Algorithm 6.3.2 SDP-based policy iteration

1: Let i = 1. Let p0 ∈ Rn2r and K1 ∈ Rm×nd satisfy V0 = pT0 [x]2,2r and u1 = K1[x]1,d.
2: Solve for an optimal solution (pi, Pi, Li) ∈ Rn2r×Rnr×nr×Rnd×nd to the following

problem.

min
p,P,L

cTp (6.48)

s.t. ι(p,Ki) = ML(L) (6.49)

pi−1 − p = MP (P ) (6.50)

P = P T ≥ 0 (6.51)

L = LT ≥ 0 (6.52)

where c =
∫
Rn s(x)[x]2,2rdx.

3: Go to Step 2) with Ki+1 = κ(pi) and i replaced by i+ 1.

Remark 6.3.4. The optimization problem (6.48)-(6.52) is a well-defined semidefi-

nite programming (SDP) problem, since it has a linear objective function subject to

linear equality and inequality constraints. It can be directly solved using, for exam-

ple, Matlab-based solver CVX [48]. Also, it can be rewritten in the standard form

(6.12)-(6.13) by equivalently replacing each equality constraint with two inequalities

constraints, and by treating p and entries in P and L as the decision variables.

Corollary 6.3.1. Under Assumptions 6.1.2 and 6.3.1, the following are true.

1. The optimization problem (6.48)-(6.52) has at least one feasible solution, for

i = 1, 2, · · · .

2. Denote Vi = pTi [x]2,2r, ui+1 = Ki[x]1,d, for i = 0, 1, · · · . Then, the sequences

{Vi}∞i=0 and {ui}∞i=1 satisfy the properties 2)-5) in Theorem 6.3.1.

Proof. Given pi ∈ Rn2r , there exist Pi and Li such that (pi, Pi, Li) is a feasible solution

to the optimization problem (6.48)-(6.52) if and only if pi is a feasible solution to the

SOS program (6.30)-(6.33). Therefore, by Theorem 6.3.1, 1) holds. In addition, since

the two optimization problems share the identical objective function, we know that

if (pi, Pi, Li) is a feasible solution to the optimization problem (6.48)-(6.52), pi is also
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an optimal solution to the SOS program (6.30)-(6.33). Hence, the corollary can be

obtained from Theorem 6.3.1.

6.4 Online learning via global adaptive dynamic

programming

The proposed policy iteration method requires the perfect knowledge of the mappings

ι and κ, which can be determined if f and g are known exactly. In practice, precise

system knowledge may be difficult to obtain. Hence, in this section, we develop an

online learning method based on the idea of ADP to implement the iterative scheme

with real-time data, instead of identifying the system dynamics.

To begin with, consider the system

ẋ = f + g(ui + e) (6.53)

where ui is a feedback control policy and e is a bounded time-varying function, known

as the exploration noise, added for the learning purpose.

Lemma 6.4.1. Consider system (6.53). Suppose ui is a globally stabilizing control

policy and there exists Vi−1 ∈ P, such that ∇Vi−1(f + gui) + uTi Rui ≤ 0. Then, the

system (6.53) is forward complete.

Proof. Under Assumptions 6.1.2 and 6.3.1, by Theorem 6.3.1 we know Vi−1 ∈ P .

Then, by completing the squares, it follows that

∇V T
i−1(f + gui + ge) ≤ −uTi Rui − 2uTi Re

= −|ui + e|2R + |e|2R

≤ |e|2R

≤ |e|2R + Vi−1.
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According to [3, Corollary 2.11], the system (6.53) is forward complete.

By Lemma 6.4.1 and Theorem 6.3.1, we immediately have the following Proposi-

tion.

Proposition 6.4.1. Under Assumptions 6.1.2 and 6.3.1, let ui be a feedback control

policy obtained at the i-th iteration step in the proposed policy iteration algorithm

(6.30)-(6.34) and e be a bounded time-varying function. Then, the closed-loop system

(6.1) with u = ui + e is forward complete.

Suppose there exist p ∈ Rn2r and Ki ∈ Rm×nk such that V = pT [x]2,2r and

ui = Ki[x]1,d. Then, along the solutions of the system (6.53), it follows that

V̇ = ∇V T (f + gui) +∇V TBe

= −r(x, ui)− L(V, ui) +∇V Tge

= −r(x, ui)− L(V, ui) + 2(
1

2
R−1gT∇V )TRe

= −r(x, ui)− ι(p,Ki)
T [x]2,2d − 2[x]T1,dκ(p)TRe (6.54)

where the last row is obtained by (6.43) and (6.44).

Now, integrating the terms in (6.99) over the interval [t, t+ δt], we have

pT ([x(t)]2,2r − [x(t+ δt)]2,2r)

=

∫ t+δt

t

[
r(x, ui) + ι(p,Ki)

T [x]2,2d + 2[x]T1,dκ(p)TRe
]
dt (6.55)

Eq. (6.55) implies that, given p ∈ Rn2r , ι(p,Ki) and κ(p) can be directly calculated

by using real-time online data, without knowing the precise knowledge of f and g.
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Indeed, define

σe = −
[

[x]T2,2d 2[x]T1,d ⊗ eTR
]T
∈ Rn2d+mnd ,

Φi =

[ ∫ t1,i
t0,i

σedt
∫ t2,i
t1,i

σedt · · ·
∫ tqi,i
tqi−1,i

σedt

]T
∈ Rqi×(n2d+mnd),

Ξi =

[ ∫ t1,i
t0,i

r(x, ui)dt
∫ t2,i
t1,i

r(x, ui)dt · · ·
∫ tqi,i
tqi−1,i

r(x, ui)dt

]T
∈ Rqi ,

Θi =

[
[x]2,2r|t1,it0,i [x]2,2r|t2,it1,i · · · [x]2,2r|tqi,itqi−1,i

]T
∈ Rqi×n2r .

Then, (6.55) implies

Φi




ι(p,Ki)

vec(κ(p))


 = Ξi + Θip. (6.56)

Assumption 6.4.1. For each i = 1, 2, · · · , there exists an integer qi0, such that when

qi ≥ qi0 the following rank condition holds.

rank(Φi) = n2d +mnd. (6.57)

Remark 6.4.1. Such a rank condition (6.57) is in the spirit of persistency of ex-

citation (PE) in adaptive control (e.g. [60, 158]) and is a necessary condition for

parameter convergence.

Given p ∈ Rn2r and Ki ∈ Rm×nd , suppose Assumption 6.4.1 is satisfied and qi ≥ qi0

for all i = 1, 2, · · · . Then, it is easy to see that the values of ι(p,Ki) and κ(p) can be

uniquely determined from




ι(p,Ki)

vec(κ(p))


 =

(
ΦT
i Φi

)−1
ΦT
i (Ξi + Θip) (6.58)

Now, we are ready to develop the ADP-based online implementation algorithm
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for the proposed policy iteration method.

Algorithm 6.4.1 Global adaptive dynamic programming algorithm

1: Initialization: Let p0 be the constant vector such that V0 = pT0 [x]2,2r, and let
i = 1.

2: Collect online data: Apply u = ui+e to the system and compute the data matrices
Φi, Ξi, and Θi, until the rank condition (6.57) in Assumption 6.4.1 is satisfied.

3: Policy evaluation and improvement: Find an optimal solution (pi, Ki+1, Pi, Li) to
the following optimization problem

min
p,K,P,L

cTp (6.59)

s.t.

[
ML(L)
vec(K)

]
=

(
ΦT
i Φi

)−1
ΦT
i (Ξi + Θip) (6.60)

pi−1 − p = MP (P ) (6.61)

P = P T ≥ 0 (6.62)

L = LT ≥ 0 (6.63)

Then, denote Vi = pTi [x]2,2r, ui+1 = Ki+1[x]1,d, and go to Step 2) with i← i+ 1.

Lemma 6.4.2. Under Assumption 6.4.1, (pi, Ki+1, Pi, Li) is an optimal solution to

the optimization problem (6.59)-(6.63) if and only if (pi, Pi, Li) is an optimal solution

to the optimization problem (6.48)-(6.52) and Ki+1 = κ(pi).

Proof. If (pi, Ki+1, Pi, Li) is an optimal solution to the optimization problem (6.59)-

(6.63), under Assumption 6.4.1, we must have Ki+1 = κ(pi). Then, it is easy to check

(pi, Pi, Li) is a feasible solution to the problem (6.48)-(6.52). On the other hand, if

(pi, Pi, Li) is a feasible solution to the problem (6.48)-(6.52), (pi, κ(pi), Pi, Li) must be

a feasible solution to the problem (6.59)-(6.63). Finally, since the two optimization

problems share the same objective function, their optimal values are the same.

By Lemma 6.4.2 and Theorem 6.3.1, we immediately have the following Theorem.

Theorem 6.4.1. Under Assumptions 6.1.1, 6.3.1 and 6.4.1, the following properties

hold.

1. The optimization problem (6.59)-(6.63) has a nonempty feasible set.
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2. The sequences {Vi}∞i=1 and {ui}∞i=1 satisfy the properties 2)-5) in Theorem 6.3.1.

Remark 6.4.2. Notice that the above-mentioned algorithm assumes that both V0 and

u1 satisfying Assumption 6.3.1 are determined without knowing exactly f and g. In

practice, upper and lower bounds of the coefficients in f and g are often available,

i.e., there exist polynomial mappings f̄ , f , ḡ, g, such that f ≤ f ≤ f̄ and g ≤ g ≤ ḡ.

Thus, it is possible to find a globally stabilizing control policy for interval systems

using robust nonlinear control methods [95, 159]. Then, we can use this control policy

as a candidate of u1 to solve for V0 from the following robust feasibility problem in

SOS programming

−∇V T
0 (f̃ + g̃u1)−Q− uT1Ru1 ∈ Σ2,2d, (6.64)

for all f̃ and g̃ such that f ≤ f̃ ≤ f̄ and g ≤ g̃ ≤ ḡ. This problem, if solvable,

can be converted into a robust linear matrix inequality and efficiently solved using

MATLAB-based solvers, such as the LMI control toolbox [45] or CVX [48].

Remark 6.4.3. In practice, a stopping criterion can be set. For example, the explo-

ration noise can be terminated and ui can be applied as the actual control policy, if

|pi−pi+1| ≤ ε or i = imax, with ε > 0 is a pre-defined threshold and imax a pre-defined

maximum number of iterations.

6.5 Extension to nonpolynomial systems

In this section, we extend the proposed global ADP method to deal with an enlarged

class of nonlinear systems. First, we will give an illustrative example to show that the

SOS condition is conservative for general nonlinear functions. Second, a generalized

parametrization method is proposed. Third, a less conservative sufficient condition

will be derived to assure the non-negativity of a given nonlinear function. Fourth,
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an SDP-based implementation for the proposed policy iteration technique will be

presented. Finally, an online learning method will be developed.

6.5.1 An illustrative example

The implementation method via SOS programs developed in the previous section

can efficiently handle nonlinear polynomial systems. The results can also be trivially

extended to real trigonometric polynomials [17]. However, the SOS-like constraint

may be conservative to be used as a sufficient condition for non-negativity of general

nonlinear functions. To see this, consider the following illustrative example:

f(x) = ax2 + bx sinx+ c sin2 x =




x

sinx




T

P




x

sinx


 . (6.65)

Apparently, a symmetric matrix P can be uniquely determined from the constants a,

b, and c. Similar to the polynomial case, we know f(x) is positive semidefinite, if P

is positive semidefinite. Unfortunately, this condition is very conservative in general.

For example, for the cases of a = 1, b = 0, c = −0.5, or a = 0, b = 1, c = 0,

it is easy to check f(x) is positive semidefinite. But in both cases, we have either

P =




1 0

0 −0.5


 or P =




0 0.5

0.5 0


, which are not positive semidefinite matrices.

This illustrative example shows that, instead of searching for a positive semidefi-

nite matrix P , a less conservative sufficient condition for the non-negativity of more

general nonlinear functions is desired. Deriving this condition and developing a glob-

al ADP method for more general nonlinear systems are the main objectives of this

section.
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6.5.2 Generalized parametrization

Assumption 6.5.1. The function f considered in system (6.1) can be decomposed

as

f = Aσ (6.66)

where A ∈ Rn×l is an uncertain constant matrix, and σ = [σ1(x), σ2(x), · · · , σl(x)]T is

a vector of locally Lipschitz, piecewise-continuous, and linearly independent functions,

satisfying σi(0) = 0, ∀i = 1, 2, · · · , l.

Now, we restrict each feasible solution to Problem 6.2.1 to take the form of V (x) =

φT (x)Pφ(x), where P ∈ Rl×l is a constant matrix and φ = [φ1(x), φ2(x), · · · , φN(x)]T

is a vector of continuously differentiable, linearly independent, functions vanishing at

the origin.

Assumption 6.5.2. The following are true.

1. For each i = 1, 2, · · · , N , j = 1, 2, · · · , N , and k = 1, 2, · · · , n, we have

∂(φiφj)

∂xk
∈ span{σ1, σ2, · · · , σl},

2. Let gi be the i-th column of g(x), with i = 1, 2, · · · ,m. Then,

gTi ∇(φiφj) ∈ span{σ1, σ2, · · · , σl}.

3. The weighting function Q(x) defined in (9.7) is positive definite and satisfies

Q(x) ∈ span{σ2
1, σ1σ2, · · · , σiσj, · · · , σ2

l }.

Notice that Assumption 6.5.2 is not restrictive, and can be satisfied by expand-

ing the basis functions. Indeed, if 1) and 2) in Assumption 6.5.2 are not satisfied,
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we can always find locally Lipschitz functions σl+1(x), σl+2(x), · · · , σl+s(x), such

that σ1, σ2, · · · , σl+s are linearly independent and vanish at the origin, satisfying

∂(φiφj)

∂xk
∈ span{σ1, σ2, · · · , σl+s} and gTi ∇(φiφj) ∈ span{σ1, σ2, · · · , σl+s}. Then,

the decomposition (6.66) can be rewritten as

f(x) = Ãσ̃ (6.67)

where Ã = [A 0n×s] and σ̃ = [σ1, σ2, · · · , σl+s]T .

Also, if the intersection between span{σ2
1, σ1σ2, · · · , σiσj, · · · , σ2

l } and the set of

all positive definite functions is empty, we can select Q(x) such that
√
Q(x) is locally

Lipschitz and positive definite. Define σ̂ = [σ1, σ2, · · · , σl,
√
Q(x)]. Then, clearly,

all the elements in σ̂ are linearly independent, and the decomposition (6.66) can be

rewritten as f = Âσ̂, where Â =

[
A 0n×1

]
.

6.5.3 A sufficient condition for non-negativity

Define {σ̄1, σ̄2, · · · , σ̄l1} as the largest linearly independent subset of {σ2
1, σ1σ2, · · · ,

σiσj, · · · , σ2
l }, and {φ̄1, φ̄2, · · · , φ̄N1} as the largest linearly independent subset of

{φ2
1, φ1φ2, · · · , φiφj, · · · , φ2

N}.

Then, if W ∈ span{φ2
1, φ1φ2, · · · , φ2

N} and δ ∈ span{φ2
1, σ1σ2, · · · , σ2

l }, there exist

uniquely constant vectors p ∈ RN1 and h ∈ Rl1 , such that W = pT φ̄ and δ = hT σ̄,

where φ̄ = [φ̄1, φ̄2, · · · , φ̄N1 ]T and σ̄ = [σ̄1, σ̄2, · · · , σ̄l1 ]T .

Using the above-mentioned parametrization method, we now show that it is possi-

ble to decide if W and δ are positive semidefinite functions, by studying the coefficient

vectors p and h.

Without loss of generality, we assume the following properties of φ̄i:

1) For i = 1, 2, · · · , N2, we have φ̄i ≥ 0, with N2 an integer satisfying 1 ≤ N2 ≤ N1.

2) There exist integers ir and jr with r = 1, 2, · · · , N3 , such that 1 ≤ ir, jr ≤ N2,
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ir 6= jr and φ̄ir ≥ φ̄jr .

Definition 6.5.1. For any p ∈ RN1, we say p ∈ S+
φ if and only if there exist constants

γ1, γ2, · · · , γN2 ≥ 0, α1, α2, · · · , αN3 ≥ 0, β1, β2, · · · , βN3, and a symmetric positive

semidefinite matrix P ∈ RN×N , such that αi + βi ≥ 0, for i = 1, 2, · · · , N3, and

p = MT
φ vec(P ) +




γ1

γ2

...

γN2

0N1−N2




+

N3∑

r=1







0ir−1

αr

0N1−ir




+




0jr−1

βr

0N1−jr







(6.68)

where Mφ ∈ RN2×N1 is a constant matrix satisfying Mφφ̄ = φ⊗ φ.

In addition, W is said to belong to the set S+
φ [x] if and only if there exists p ∈ S+

φ ,

such that W = pT φ̄.

Lemma 6.5.1. If p ∈ S+
φ , then pT φ̄ is positive semidefinite.

Proof. By definition, if p ∈ S+
φ , it follows that

pT φ̄ = φTPφ+

N2∑

i=1

γ2φ̄i +

N3∑

r=1

(
αrφ̄ir + βrφ̄jr

)

≥
N3∑

r=1

(
αrφ̄ir − |βr|φ̄jr

)
=

N3∑

r=1

(αr − |βr|) φ̄ir

≥ 0.

The proof is complete.

In the same way, we can find two sets S+
σ and S+

σ [x], such that the following

implications hold

h ∈ S+
σ ⇔ hT φ̄ ∈ S+

σ [x]⇒ hT φ̄ ≥ 0. (6.69)
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6.5.4 Generalized policy iteration

Assumption 6.5.3. There exist p0 ∈ RN1 and K1 ∈ Rm×l1, such that V0 = pT0 φ̄,

u1 = K1σ, and L(V0, u1) ∈ S+
φ .

Remark 6.5.1. Under Assumptions 6.5.1, 6.5.2, and 6.5.3, Assumption 6.1.1 is

satisfied.

Now, let us show how the proposed policy iteration can be practically implement-

ed. First of all, given p ∈ RN1 , since ui = Kiσ, we can always find two linear mappings

ῑ : RN1 × Rml → Rl1 and κ̄ : RN1 → Rl1×ml , such that

ῑ(p,K)T σ̄ = L(pT φ̄,Kiσ) (6.70)

κ̄(p)T σ̄ = −1

2
R−1gT∇(pT φ̄) (6.71)

Then, under Assumptions 6.1.2, 6.5.1, 6.5.2, and 6.5.3, the proposed policy itera-

tion can be implemented as follows.

Algorithm 6.5.1 SDP-based policy iteration for nonpolynomial systems

1: Initialization:
2: Find p0 ∈ RN1 and K1 ∈ Rm×l1 satisfying Assumption 6.5.3, and let i = 1.
3: Policy evaluation and improvement:
4: Solve for an optimal solution (pi, Ki+1) of the following problem.

min
p,K

cTp (6.72)

s.t. ῑ(p,Ki) ∈ S+
σ (6.73)

pi−1 − p ∈ S+
φ (6.74)

K = κ̄(p) (6.75)

where c =
∫
Rn s(x)φ̄(x)dx. Then, denote Vi = pTi φ̄ and ui+1 = Ki+1σ.

5: Go to Step 2) with i replaced by i+ 1.

Some useful facts about the above-mentioned policy iteration algorithm are sum-

marized in the following theorem, of which the proof is omitted, because it is nearly

identical to the proof of Theorem 6.3.1.
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Theorem 6.5.1. Under Assumptions 6.1.2, 6.5.1, 6.5.2, and 6.5.3 the following are

true, for i = 1, 2, · · · .

1) The optimization problem (6.72)-(6.75) has a nonempty feasible set.

2) The closed-loop system comprised of (6.1) and u = ui(x) is globally asymptoti-

cally stable at the origin.

3) Vi ∈ P. In addition, V o(x0) ≤ Vi(x0) ≤ Vi−1(x0), ∀x0 ∈ Rn.

4) There exists p∗ ∈ RN1, such that lim
i→∞

Vi(x0) = p∗T φ̄(x0), ∀x0 ∈ Rn.

5) Along the solutions of the system (6.1) with u∗ = −1
2
R−1gT∇(p∗T φ̄), it follows

that

0 ≤ p∗T φ̄(x0)− V o(x0) ≤ −
∫ ∞

0

H(p∗T φ̄(x(t)))dt. (6.76)

6.5.5 Online implementation via global adaptive dynamic pro-

gramming

Let V = pT φ̄. Similar as in Section 6.4, over the interval [t, t+ δt], we have

pT
[
φ̄(x(t))− φ̄(x(t+ δt))

]

=

∫ t+δt

t

[
r(x, ui) + ῑ(p,Ki)

T σ̄ + 2σT κ̄(p)TRe
]
dt (6.77)

Therefore, (6.77) shows that, given p ∈ RN1 , ῑ(p,Ki) and κ̄(p) can be directly

obtained by using real-time online data, without knowing the precise knowledge of f

and g.
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Indeed, define

σ̄e = −
[
σ̄T 2σT ⊗ eTR

]T
∈ Rl1+ml,

Φ̄i =

[ ∫ t1,i
t0,i

σ̄edt
∫ t2,i
t1,i

σ̄edt · · ·
∫ tqi,i
tqi−1,i

σ̄edt

]T
∈ Rqi×(l1+ml),

Ξ̄i =

[ ∫ t1,i
t0,i

r(x, ui)dt
∫ t2,i
t1,i

r(x, ui)dt · · ·
∫ tqi,i
tqi−1,i

r(x, ui)dt

]T
∈ Rqi ,

Θ̄i =

[
φ̄(x)|t1,it0,i φ̄(x)|t2,it1,i · · · φ̄(x)|tqi,itqi−1,i

]T
∈ Rqi×N1 .

Then, (6.77) implies

Φ̄i




ῑ(p,Ki)

vec(κ̄(p))


 = Ξ̄i + Θ̄ip. (6.78)

Assumption 6.5.4. For each i = 1, 2, · · · , there exists an integer qi0, such that, when

qi ≥ qi0, the following rank condition holds.

rank(Φ̄i) = l1 +ml. (6.79)

Let p ∈ RN1 and Ki ∈ Rm×l. Suppose Assumption 6.5.4 holds and assume qi ≥ qi0,

for i = 1, 2, · · · . Then, ῑ(p,Ki) and κ̄(p) can be uniquely determined by




h

vec(K)


 =

(
Φ̄T
i Φ̄i

)−1
Φ̄T
i

(
Ξ̄i + Θ̄ip

)
. (6.80)

Now, we are ready to develop the ADP-based online implementation algorithm

for the proposed policy iteration method.

Properties of the above algorithm are summarized in the following corollary.

Corollary 6.5.1. Under Assumptions 6.1.2, 6.5.1, 6.5.2, 6.5.3, and 6.5.4, the algo-

rithm enjoys the following properties.

131



Algorithm 6.5.2 Global adaptive dynamic programming algorithm for nonpolyno-
mial systems

1: Initialization: Let p0 and K1 satisfying Assumption 6.5.3, and let i = 1.
2: Collect online data: Apply u = ui+e to the system and compute the data matrices

Φ̄i, Ξ̄i, and Θ̄i, until the rank condition (6.79) is satisfied.
3: Policy evaluation and improvement: Find an optimal solution (pi, hi, Ki+1) to the

following optimization problem

min
p,h,K

cTp (6.81)

s.t.

[
h

vec(K)

]
=

(
Φ̄T
i Φ̄i

)−1
Φ̄T
i

(
Ξ̄i + Θ̄ip

)
(6.82)

h ∈ S+
σ (6.83)

pi−1 − p ∈ S+
φ (6.84)

Then, denote Vi = piφ̄ and ui+1 = Ki+1σ̄.
4: Go to Step 2) with i← i+ 1.

1. The optimization problem (6.100)-(6.103) has a feasible solution.

2. The sequences {Vi}∞i=1 and {ui}∞i=1 satisfy the properties 2)-5) in Theorem 6.5.1.

6.6 Robust redesign

Consider consider nonlinear system with dynamic uncertainties as follows

ẇ = q(w, x) (6.85)

ẋ = f(x) + g(x) [u+ ∆(w, x)] (6.86)

where x ∈ Rn is the system state, w ∈ Rnw is the state of the dynamic uncertainty,

u ∈ Rm is the control input, f : Rn → Rn and g : Rn → Rn×m are unknown

polynomial mappings with f(0) = 0.

Again, in the presence of the dynamic uncertainty, i.e., the w-subsystem, Algo-

rithm 6.5.2 may not lead to an optimal or suboptimal control policy, since ui obtained

in Algorithm 6.5.2 may not be stabilizing for the overall system (6.85)-(6.86). There-
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fore, to balance the tradeoff between global robust stability and optimality, here we

develop a method to redesign the control policy. Similarly as in the previous chapter,

the idea is inspired from the work by [83, 129].

To begin with, we define the cost functional as

min J(x0, u) =

∫ ∞

0

[
Q(x) + uTRu

]
dt, (6.87)

where Q(x) = Q0(x) + ε|x|2, with Q0(x) is a positive definite function, ε > 0 is a

constant, R is a symmetric and positive definite matrix.

Our design objective is twofold. First, we intend to minimize the cost (6.87) for

the nominal system

ẋ = f(x) + g(x)u, (6.88)

by finding online an optimal control policy uo. Second, we want to guarantee the

stability of the system comprised of (6.85) and (6.86) by redesigning the optimal

control policy.

To this end, let us introduce the following Assumption.

Assumption 6.6.1. Consider the system comprised of (6.85) and (6.86). There

exist functions λ, λ̄ ∈ K∞, κ1, κ2, κ3 ∈ K, and positive definite functions W and κ4,

such that for all w ∈ Rp and x ∈ Rn, we have

λ(|w|) ≤ W (w) ≤ λ̄(|w|), (6.89)

|∆(w, x)| ≤ κ1(|w|) + κ2(|x|), (6.90)

together with the following implication:

W (w) ≥ κ3(|x|)⇒ ∇W (w)T q(w, x) ≤ −κ4(w). (6.91)
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Assumption 6.6.1 implies that the w-system (6.85) is input-to-state stable (ISS)

[149, 151] when x is considered as the input.

Let Vi ∈ P and ui be the cost function and the control policy obtained from

Algorithm 6.5.2. Then, we know that L(Vi, ui) ≥ 0. Also, there exist α, ᾱ ∈ K∞,

such that the following inequalities hold:

α(|x|) ≤ V o(x) ≤ Vi(x) ≤ V0(x) ≤ ᾱ(|x|), ∀x0 ∈ Rn; (6.92)

The robustly redesigned control policy is given below:

ur,i = ρ2(|x|2)ui + e (6.93)

where ρ(·) is a smooth and nondecreasing function with ρ(s) ≥ 1, ∀s > 0, e denotes

the time varying exploration noise added for the purpose of online learning.

Theorem 6.6.1. Consider the closed-loop system comprised of (6.85), (6.86), and

(6.93). Let Vi ∈ P and ui be the cost function and the control policy obtained from

Algorithm 6.5.2 at the i-th iteration step. Then, the closed-loop system is ISS with

respect to e as the input, if the following gain condition holds:

γ > κ1 ◦ λ−1 ◦ κ3 ◦ α−1 ◦ ᾱ + κ2, (6.94)

where γ ∈ K∞ is defined by

γ(s) = εs

√
1
4

+ 1
2
ρ2(s2)

λmin(R)
. (6.95)

Proof. Let χ1 = κ3 ◦ α−1. Then, under Assumption 6.6.1, we immediately have the
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following implications

W (w) ≥ χ1(Vi(x))

⇒ W (w) ≥ κ3

(
α−1(Vi(x))

)
≥ κ3 (|x|)

⇒ ∇W (w)T q(w, x) ≤ −κ4(w) (6.96)

Define ρ̃(x) =
√

1
4

+ 1
2
ρ2(|x|2)

λmin(R)
. Then, along solutions of the system comprised of

(6.86), it follows that

∇V T
i [f + g (ur,i + ∆)]

≤ −Q(x)− |ui|2R +∇V T
i g
[(
ρ2(|x|2)− 1

)
ui + ∆ + e

]

≤ −Q(x)− ρ̃2
∣∣gT∇Vi

∣∣2 +∇V T
i g (∆ + e)

≤ −Q(x)−
∣∣∣∣ρ̃gT∇Vi −

1

2
ρ̃−1∆

∣∣∣∣
2

+
1

4
ρ̃−2|∆ + e|2

≤ −Q0(x)− ε2|x|2 + ρ̃−2 max{|∆|2, |e|2}

≤ −Q0(x)− ρ̃−2
(
γ2 −max{|∆|2, |e|2}

)

Hence, by defining χ2 = ᾱ ◦ (γ − κ2)−1 ◦ κ1 ◦ λ−1, it follows that

Vi(x) ≥ max{χ2(W (w)), ᾱ ◦ (γ − κ2)−1 (|e|)}

⇔ Vi(x) ≥ ᾱ ◦ (γ − κ2)−1 ◦max{κ1 ◦ λ−1(W (w)), |e|}

⇒ (γ − κ2) ◦ ᾱ−1 (Vi(x)) ≥ max{κ1 ◦ λ−1(W (w)), |e|}

⇒ γ(|x|)− κ2(|x|) ≥ max{κ1 ◦ λ−1(W (w)), |e|}

⇒ γ(|x|)− κ2(|x|) ≥ max{κ1(|w|), |e|}

⇒ γ(|x|) ≥ max{|∆(w, x)|, |e|}

⇒ ∇V T
i [f + g (ur,i+1 + ∆)] ≤ −Q0(x) (6.97)

135



Finally, by the gain condition, we have

γ > κ1 ◦ λ−1 ◦ κ3 ◦ α−1 ◦ ᾱ + κ2

⇒ Id > (γ − κ2)−1 ◦ κ1 ◦ λ−1 ◦ κ3 ◦ α−1 ◦ ᾱ

⇒ Id > ᾱ ◦ (γ − κ2)−1 ◦ κ1 ◦ λ−1 ◦ κ3 ◦ α−1

⇒ Id > χ2 ◦ χ1. (6.98)

The proof is thus completed by the small-gain theorem [81].

Similarly as in the previous section, along the solution of the system (6.86) and

(6.93), it follows that

V̇ = ∇V T (f + gur,i)

= ∇V T (f + gui) +∇V Tgẽ

= −r(x, ui)− L(V, ui) +∇V Tgẽ

= −r(x, ui)− L(V, ui) + 2(
1

2
R−1gT∇V )TRẽ

= −r(x, ui)− ι(p,Ki)
T [x]2,2d − 2[x]T1,dκ(p)TRẽ (6.99)

where ẽ = (ρ2(|x|2)− 1)ui + e.

Therefore, we can redefine the data matrices as follows. Indeed, define

σ̄e = −
[
σ̄T 2σT ⊗ eTR

]T
∈ Rl1+ml,

Φ̄i =

[ ∫ t1,i
t0,i

σ̄edt
∫ t2,i
t1,i

σ̄edt · · ·
∫ tqi,i
tqi−1,i

σ̄edt

]T
∈ Rqi×(l1+ml),

Ξ̄i =

[ ∫ t1,i
t0,i

r(x, ui)dt
∫ t2,i
t1,i

r(x, ui)dt · · ·
∫ tqi,i
tqi−1,i

r(x, ui)dt

]T
∈ Rqi ,

Θ̄i =

[
φ̄(x)|t1,it0,i φ̄(x)|t2,it1,i · · · φ̄(x)|tqi,itqi−1,i

]T
∈ Rqi×N1 .

Then, the global robust adaptive dynamic programming algorithm is given below.
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Algorithm 6.6.1 The global robust adaptive dynamic programming algorithm algo-
rithm
1: Initialization: Let p0 and K1 satisfying Assumption 6.5.3, and let i = 1.
2: Collect online data: Apply u = ur,i = ρ2(|x|2)ui + e to the system and compute

the data matrices Φi, Ξi, and Θi, until the rank condition in Assumption 6.5.4 is
satisfied.

3: Policy evaluation and improvement: Find an optimal solution (pi, hi, Ki+1) to the
following optimization problem

min
p,h,K

cTp (6.100)

s.t.

[
h

vec(K)

]
=

(
Φ̄T
i Φ̄i

)−1
Φ̄T
i

(
Ξ̄i + Θ̄ip

)
(6.101)

h ∈ S+
σ (6.102)

pi−1 − p ∈ S+
φ (6.103)

Then, denote Vi = piφ̄ and ui+1 = Ki+1σ̄.
4: Go to Step 2) with i← i+ 1.

Corollary 6.6.1. Under Assumptions 6.1.2, 6.3.1 and 6.4.1, the following properties

hold.

1) The optimization problem (6.59)-(6.63) has a nonempty feasible set.

2) The sequences {Vi}∞i=1 and {ui}∞i=1 satisfy the properties 2)-5) in Theorem 6.3.1.

3) Suppose the gain condition (6.94) holds. Then, the closed-loop system comprised

of (6.85), (6.86), and (6.93) is ISS with respect to e as the input.

6.7 Numerical examples

This section provides three numerical examples to illustrate the effectiveness of the

proposed algorithms.
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6.7.1 A scalar nonlinear polynomial system

Consider the following polynomial system

ẋ = ax2 + bu (6.104)

where x ∈ R is the system state, u ∈ R is the control input, a and b, satisfying

a ∈ [0, 0.05] and b ∈ [0.5, 1], are uncertain constants. The cost to be minimized is

defined as

J(x0, u) =

∫ ∞

0

(0.01x2 + 0.01x4 + u2)dt. (6.105)

An initial stabilizing control policy can be selected as u1 = −0.1x − 0.1x3, which

globally asymptotically stabilizes system (6.104), for any a and b satisfying the given

range. Further, it is easy to see that V0 = 10(x2 +x4) and u1 satisfy Assumption 6.3.1

with r = 2. In addition, in the present case, we set d = 3 and d1 = 0 in Assumption

6.3.1.

Only for the purpose of simulation, set a = 0.01, b = 1, and x(0) = 2. The

proposed global ADP method is applied with the control policy updated after every

five seconds, and convergence is attained after five iterations, when |pi−pi−1| ≤ 10−3.

The coefficient in the objective function (6.48) is defined as c = [x(1)]2,4 + [x(−1)]2,4,

i.e., the weighting function is set to be s(x) = δ(x− 1) + δ(x+ 1) with δ(·) denoting

the impulse function. The exploration noise is set to be e = 0.01(sin(10t) + sin(3t) +

sin(100t)), which is turned off after the fifth iteration.

The suboptimal control policy and the cost function obtained after five iterations

are

V ∗ = 0.1020x2 + 0.007x3 + 0.0210x4, (6.106)

u∗ = −0.2039x− 0.02x2 − 0.0829x3. (6.107)
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Figure 6.1: Simulation of the scalar system: State trajectory

For comparison purpose, the exact optimal cost and the control policy are given

below.

V o =
x3

150
+

(
√

101x2 + 100)3

15150
− 20

303
(6.108)

uo = −x
2
√

101x2 + 100 + 101x4 + 100x2

100
√

101x2 + 100
(6.109)

Figures 6.1-6.4 shows the comparison of the suboptimal control policy with respect

to the exact optimal control policy and the initial control policy.
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6.7.2 Inverted pendulum

Consider the following differential equations which are used to model an inverted

pendulum:

ẋ1 = x2 (6.110)

ẋ2 = −kl
m
x2 + g sin(x1) +

1

m
u (6.111)

where x1 is the angular position of the pendulum, x2 is the angular velocity, u is

the control input, g is the gravity constant, l is the length of the pendulum, k is the

coefficient of friction, and m is the mass. The design objective is to find a suboptimal

and globally stabilizing control policy that can drive the state to the origin. Assume

the parameters are not precisely known, but they satisfy 0.5 ≤ k ≤ 1.5, 0.5 ≤ m ≤ 1.5,

0.8 ≤ l ≤ 1.2, and 9 ≤ g ≤ 10.
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Notice that we can select φ = [x1, x2]T and σ = [x1, x2, sinx1]T . The cost is

selected as J(x0, u) =
∫∞

0
(10x2

1 + 10x2 + u2)dt.

Further, set φ̄ = [x2
1, x1x2, x2

2]T and σ̄ = [x2
1, x2

2, x1 sinx1, sin2 x1, x2 sinx1,

x1x2]T . Then, based on the range of the system parameters, a pair (V0, u1) sat-

isfying Assumption 6.5.3 can be obtained as u1 = −10x2
1 − x2 − 15 sinx1, and

V0 = 320.1297x2
1 + 46.3648x1x2 + 22.6132x2

2. The coefficient vector c is defined as

c = φ̄(1,−1) + φ̄(1, 1).

The initial condition for the system is set to be x1(0) = −1.5 and x2(0) = 1.

The control policy is updated after 0.5 seconds, until convergence is attained after 4

iterations. The exploration noise we use is the sum of sinusoidal waves with different

frequencies, and it is terminated once the convergence is attained.

The resultant control policy and the cost function are u∗ = −20.9844x1−7.5807x2

and V ∗ = 86.0463x2
1 + 41.9688x1x2 + 7.5807x2

2. Simulation results are provided in

Figures 6.5-6.6. It can be seen that the system performance is significantly improved

under the proposed ADP scheme.

6.7.3 Jet engine surge and stall dynamics

Consider the following system, which is inspired by the jet engine surge and stall

dynamics in [94, 119]

ṙ = −σr2 − σr
(
2φ+ φ2

)
(6.112)

φ̇ = −aφ2 − bφ3 − (u+ 3rφ+ 3r) (6.113)

where r > 0 is the normalized rotating stall amplitude, φ is the deviation of the scaled

annulus-averaged flow, u is the deviation of the plenum pressure rise and is treated

as the control input, σ ∈ [0.2, 0.5], a ∈ [1.2, 1.6], b ∈ [0.3, 0.7] are uncertain constants.

In this example, we assume the variable r is not available for real-time feedback
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control due to a 0.2s time-delay in measuring it. Hence, the objective is to find a

control policy that only relies on φ.

The cost function we used here is

J =

∫ ∞

0

(
5φ2 + u2

)
dt (6.114)

and an initial control policy is chosen as

ur,1 = −1

2
ρ2(φ2)

(
2x− 1.4x2 − 0.45x3

)
(6.115)

with ρ(s) =
√

2.

Only for the purpose of simulation, we set σ = 0.3, a = 1.5, and b = 0.5. The

control policy is updated every 0.25s until the convergence criterion, |pi− pi−1| < 0.1

is satisfied. The simulation results are provided in Figures 6.7-6.9. It can be seen

that the system performance has been improved via online learning.

6.8 Conclusions

This chapter has proposed a global robust adaptive dynamic programming method.

In particular, a new policy iteration scheme has been developed. Different from

conventional policy iteration, the new iterative technique does not attempt to solve a

partial differential equation but a convex optimization problem at each iteration step.

It has been shown that, this method can find a suboptimal solution to continuous-time

nonlinear optimal control problems [103]. In addition, the resultant control policy is

globally stabilizing. Also, the method can be viewed as a computational strategy to

solve directly Hamilton-Jacobi inequalities, which are used in H∞ control problems

[52, 169]. In the presence of dynamic uncertainties, robustification of the proposed

algorithms and their online implementations has been addressed, by integration with
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the ISS property [149, 151] and the nonlinear small-gain theorem [83, 81].

When the system parameters are unknown, conventional ADP methods utilize

neural networks to approximate online the optimal solution, and a large number of

basis functions are required to assure high approximation accuracy on some compact

sets. Thus, neural-network-based ADP schemes may result in slow convergence and

loss of global asymptotic stability for the closed-loop system. Here, the proposed

GRADP method has overcome the two above-mentioned shortcomings, and it yields

computational benefits.
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Chapter 7

RADP as a theory of sensorimotor

control

Many tasks that humans perform in our daily lives involve different sources of uncer-

tainties. However, it is interesting and surprising to notice how the central nervous

system can coordinate gracefully our movements to deal with these uncertainties. For

example, one may be clumsy in moving an object with uncertain mass and unknown

friction at the first time, but after several trials, the movements will gradually become

smooth. Although extensive research by many authors has been made, the underlying

computational mechanisms in sensorimotor control require further investigations.

From different aspects, many theories have been proposed to explain the computa-

tional nature of sensorimotor control; see the review article [43]. One widely accepted

view is that the central nervous system (CNS) prefers trajectories produced by min-

imizing some cost function. This perspective has inspired quite a few optimization-

based models for motor control (see [33, 40, 50, 55, 77, 131, 140, 163, 162, 165], and

references therein). These models can explain many characteristics of motor control,

such as approximately straight movement trajectories and the bell-shaped velocity

curves reported by [120]. However, these models assume the CNS knows and uses the
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dynamics of both the motor system and the interactive environment. Consequently,

an indirect control scheme is assumed. Namely, the CNS first identifies all the system

dynamics, and then finds the optimal control policies based on the identified infor-

mation. This identification-based idea has also been used to study motor adaptation

under external perturbations [9, 13, 31, 92, 142, 195]. Nevertheless, this viewpoint

is difficult to be justified theoretically and has not been convincingly validated by

experiments. Using self-generated perturbation, [59] reported that disturbance may

not be identified by the CNS, and the control policy may not necessarily be optimal in

the presence of uncertainties. Indeed, when uncertainties, especially dynamic uncer-

tainties, occur, it becomes difficult to maintain not only optimality, but also stability.

Since the optimization-based model may not be suitable to study the behavior and

stability of motor systems, developing a new theoretical modeling framework is not

only necessary but also of great importance.

The primary objective of this chapter is to study sensorimotor control with static

and dynamic uncertainties under the framework of RADP [68, 69, 72, 73, 79]. In this

chapter, the linear version of RADP is extended for stochastic systems by taking into

account signal-dependent noise [50], and the proposed method is applied to study the

sensorimotor control problem with both static and dynamic uncertainties.

There are two main advantages of the proposed modeling strategy. First of all, as a

non-model-based approach, RADP shares some essential features with reinforcement

learning (RL) [155], which is originally inspired by learning mechanisms observed in

biological systems. RL concerns how an agent should modify its actions to interact

with the unknown environment and to achieve a long-term goal. In addition, certain

brain areas that can realize the steps of RL have been discussed by [36]. Like in many

other ADP-based methods, the proposed RADP theory solves the Bellman equation

[8] iteratively using real-time sensory information and can avoid the so-called “curse

of dimensionality” in conventional dynamic programming. Also, rigorous convergence
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analysis can be performed. Second, instead of identifying the dynamics of the overall

dynamic system, we decompose the system into an interconnection of a simplified

model (nominal system) with measurable state variables and the dynamic uncertainty

(or, unmodeled dynamics) with unmeasurable state variables and unknown system

order (see Figure 7.1). Then, we design the robust optimal control policy for the

overall system using partial-state feedback. In this way, we can preserve optimality

for the nominal reduced model as well as guarantee robust stability for the overall

system. Compared with identification-based models, this modeling strategy is more

realistic for sensorimotor systems for at least two reasons. First, identifying the exact

model of both the motor system and the uncertain environment is not an easy task.

Second, it is time-consuming and would yield slow response if the sensorimotor system

first estimates all system variables before taking actions.

Detailed learning algorithms are presented in this chapter, and numerical studies

are also provided. Interestingly, our computational results match well with exper-

iments reported from the past literature [22, 41, 142]. The proposed theory also

provides a unified theoretical framework that connects optimality and robustness. In

addition, it links the stiffness geometry to the selection of the weighting matrices in

the cost function. Therefore, we argue that the CNS may use RADP-like learning s-

trategy to coordinate movements and to achieve successful adaptation in the presence

of static and/or dynamic uncertainties. In the absence of the dynamic uncertainties,

the learning strategy reduces to an ADP-like mechanism.
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7.1 ADP for continuous-time stochastic systems

7.1.1 Problem formulation

To study sensorimotor control, we consider the following system governed by stochas-

tic differential equations:

dx = Axdt+Budt+BΣq
i=1Ciudηi (7.1)

where A ∈ Rn×n and B ∈ Rn×m are constant matrices describing the system dynamics

with the pair (A,B) assumed to be stabilizable (i.e., there exists some constant matrix

K0 ∈ Rm×n such that A−BK0 is a Hurwitz matrix in the sense that all its eigenvalues

are in the open left-half plane), u ∈ Rm is the control signal, ηi are independent scalar

Brownian motions and Ci ∈ Rm×m are constant matrices, for i = 1, 2, · · · , q.

The control objective is to determine a linear control policy

u = −Kx (7.2)

which minimizes the following cost function

J =

∫ ∞

0

(xTQx+ uTRu)dt (7.3)

for the nominal system of (7.1) (i.e., system (7.1) with ηi = 0, ∀i = 1, 2, · · · ,m),

where Q = QT ≥ 0, R = RT > 0, with (A,Q1/2) observable. By observability, we

mean that the solution x(t) of the system dx = Axdt is identically zero when the

output y = Q1/2x is identically zero [99].

According to linear optimal control theory [99], when both A and B are accurately

known, solution to this problem can be found by solving the following well-known
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algebraic Riccati equation (ARE)

ATP + PA+Q− PBR−1BTP = 0. (7.4)

By the assumptions mentioned above, (7.4) has a unique symmetric positive def-

inite solution P ∗ ∈ Rn×n. The optimal feedback gain matrix K∗ in (7.2) can thus be

determined by

K∗ = R−1BTP ∗. (7.5)

In the presence of the signal-dependent noise ηi, the closed-loop system is mean-

square stable [90], if

0 > (A−BK∗)⊗ In + In ⊗ (A−BK∗)

+Σq
i=1 (BCiK

∗ ⊗BCiK∗) . (7.6)

If the constant matrices Ci, i = 1, 2, · · · , q, are so small that (7.6) holds, the

control policy u = −K∗x is called robust optimal, i.e., it is optimal in the absence of

the noise ηi, and is stabilizing in the presence of ηi.

7.1.2 Policy iteration

To solve (7.4) which is nonlinear in P , the policy iteration algorithm from reinforce-

ment learning can be applied [91], and in [91], it has been proved that the sequences

{Pk} and {Kk} iteratively determined from policy iteration (7.7) and (7.8) have the

following properties:

1) A−BKk is Hurwitz,

2) P ∗ ≤ Pk+1 ≤ Pk, and
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3) lim
k→∞

Kk = K∗, lim
k→∞

Pk = P ∗.

Algorithm 7.1.1 Policy iteration with control-dependent noise

1: Find an initial stabilizing feedback gain matrix K0, such that A−BK0 is Hurwitz.
2: Solve Pk from

0 = (A−BKk)
TPk + Pk(A−BKk) +Q+KT

k RKk (7.7)

3: Improve the control policy by

Kk+1 = R−1BTPk (7.8)

4: Go to Step 2) and solve for Pk+1 with Kk replaced by Kk+1.

7.1.3 ADP for linear stochastic systems with signal-dependent

noise

The policy iteration algorithm relies on the perfect knowledge of the system dynamics,

because the system matrices A and B are involved in the equations (7.7) and (7.8).

In [68], it has been shown that in the deterministic case, when A and B are unknown,

equivalent iterations can be achieved using online measurements. Here we extend

the methodology by [68] to deal with stochastic linear systems with signal-dependent

noise, and to find online the optimal control policy without assuming the a priori

knowledge of A and B.

To begin with, let us rewrite the original system (7.1) as

dx = (A−BKk)xdt+B(dw +Kkxdt) (7.9)

where

dw = udt+ Σq
i=1Ciudηi (7.10)

represents the combined signal received by the motor plant from the input channel.
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Now, let us define Ak = A−BKk, Qk = Q+KT
k RKk, and Mk = BTPkB. Then,

by Itô’s lemma [62], along the solutions of (7.53), it follows that

d(xTPkx)

= dxTPkx+ xTPkdx+ dxTPkdx

= xT (ATkPk + PkAk)xdt+ 2(Kkxdt+ dw)TBTPkx

+dwTBTPkBdw

= −xTQkxdt+ 2(Kkxdt+ dw)TBTPkx+ dwTMkdw (7.11)

Notice that dwTMkdw 6= 0 because

dwTMkdw

= (udt+ Σq
i=1Ciudηi)

TMk(udt+ Σq
i=1Ciudηi)

= uTMku(dt)2 + Σq
i=1u

TCT
i MkCiu(dηi)

2

+Σ1≤i 6=j≤qu
TCT

i MkCiudηidηj

= Σq
i=1u

TCT
i MkCiudt

Next, integrating both sides of (7.55) from t to t+ δt, we obtain

x(t+ δt)TPkx(t+ δt)− x(t)TPkx(t)

= −
∫ t+δt

t

(
xTQx+ uTkRuk

)
dt+

∫ t+δt

t

dwTMkdw (7.12)

+2

∫ t+δt

t

(Kkx+ dw)TRKk+1x

where uk = −Kkx.

Notice that (7.59) plays an important role in separating accurately the system

dynamics from the iterative process. As a result, the requirement of the system

matrices in (7.7) and (7.8) can now be replaced by the state and input information
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measured in real-time.

We now show that given a matrix Kk such that A − BKk is Hurwitz, a pair of

matrices (Pk, Kk+1), with Pk = P T
k > 0, satisfying (7.7) and (7.8) can be uniquely

determined without knowing A or B . To this end, recall that we have defined the

following two operators:

P ∈ Rn×n → P̂ ∈ R
1
2
n(n+1)

x ∈ Rn → x̄ ∈ R
1
2
n(n+1)

where

P̂ = [p11, 2p12, · · · , 2p1n, p22, 2p23, · · · , 2pn−1,n, pnn]T ,

x̄ = [x2
1, x1x2, · · · , x1xn, x

2
2, x2x3, · · · , xn−1xn, x

2
n]T .

Therefore, by Kronecker product representation [56], we have

(Kkxdt+ dw)TRKk+1x = [x⊗R(Kkxdt+ dw)]T vec(Kk+1).

Further, for a sufficiently large positive integer lk > 0, we define matrices δx,k ∈

Rlk× 1
2
n(n+1), Iq,k ∈ Rlk , Ixv,k ∈ Rlk×mn, and Iu,k ∈ Rlk× 1

2
m(m+1), such that

δx,k =




x̄T (t1,k)− x̄T (t0,k)

x̄T (t2,k)− x̄T (t1,k)

...

x̄T (tlk,k)− x̄T (tlk−1,k)



,
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Iq,k =




∫ t1,k
t0,k

(
xTQx+ uTkRuk

)
dt

∫ t2,k
t1,k

(
xTQx+ uTkRuk

)
dt

· · ·
∫ tlk,k
tlk−1,k

(
xTQx+ uTkRuk

)
dt



,

Ixv,k =




∫ t1,k
t0,k

xT ⊗ (Kkxdt+ dw)TR
∫ t2,k
t1,k

xT ⊗ (Kkxdt+ dw)TR

...
∫ tlk,k
tlk−1,k

xT ⊗ (Kkxdt+ dw)TR



,

Iu,k =




∫ t1,k
t0,k

w̄Tdτ
∫ t2,k
t1,k

w̄Tdτ

· · ·
∫ tlk,k
tlk−1,k

w̄Tdτ




where 0 ≤ tlk−1,k−1 ≤ t0,k < t1,k < · · · < tlk,k < t0,k+1.

Therefore, (7.59) implies the following compact form of linear equations

Θk




P̂k

M̂k

vec (Kk+1)




= −Iq,k (7.13)

where Θk ∈ Rlk×[ 1
2
n(n+1)+mn] is defined as:

Θk = [δx,k,−Iu,k,−2Ixv,k] ,

To guarantee the existence and uniqueness of solution to (7.62), we assume Θk has
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full column rank for all k ∈ Z+. As a result, (7.62) can be directly solved as follows:




P̂k

M̂k

vec (Kk+1)




= −(ΘT
kΘk)

−1ΘT
k Iq,k. (7.14)

It is worth noticing that when the sensory noise is taken into account, numerical

errors may occur when computing the matrices Iq,k, Ixv,k, and Iu,k. Consequently, the

solution of (7.14) can be viewed as the least squares solution of (7.62). Alternatively,

an approximation of the unique solution of (7.62) can be obtained using a recursive

least-squares method [111].

7.1.4 The ADP algorithm

Now, we are ready to give the following ADP algorithm for practical online imple-

mentation.

Algorithm 7.1.2 Adaptive dynamic programming algorithm

1: Find an initial stabilizing control policy u0 = −K0x, and set k = 0.
2: Apply uk = −Kkx as the control input on the time interval [t0,k, tlk,k]. Compute
δx,k, Iq,k, Ixv,k, and Iu,k.

3: Solve Pk, Mk, and Kk+1 from (7.14).
4: Let k ← k + 1, and go to Step 2.

Compared with most of the existing models for motor adaptation, the proposed

ADP algorithm can be used to study both the online learning during one single trial

and the learning among different trials. In the latter case, the interval [t0,k, tlk,k]

should be taken from the time duration of a single trial.

7.1.5 Convergence analysis

The convergence property of the proposed algorithm can be summarized in the fol-

lowing Theorem.
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Theorem 7.1.1. Suppose Θk has full column rank for all k ∈ Z+ and A − BK0 is

Hurwitz. Then, the sequences {Kk}, {Pk}, and {Mk} obtained from (7.14) satisfy

lim
k→∞

Pk = P ∗, lim
k→∞

Kk = K∗, and lim
k→∞

Mk = BTP ∗B.

Proof. Given a stabilizing feedback gain matrix Kk, if Pk = P T
k is the solution of

(7.7), Kk+1 and Mk are uniquely determined by Kk+1 = R−1BTPk and Mk = BTPkB,

respectively. By (7.59), we know that Pk, Kk+1, and Mk satisfy (7.14).

On the other hand, let P = P T ∈ Rn×n, M ∈ Rm×m, and K ∈ Rm×n, such that

Θk




P̂

M̂

vec(K)




= Ξk. (7.15)

Then, we immediately have P̂ = P̂k, M̂ = M̂k , and vec(K) = vec(Kk+1). Since Θk

has full column rank, P = P T , M = MT , and K are unique. In addition, by the

definitions of P̂ , M̂ , and vec(K), Pk = P , Mk = M and Kk+1 = K are uniquely

determined. Therefore, the policy iteration (7.14) is equivalent to (7.7) and (7.8). By

[91], the convergence is thus proved.

7.2 RADP for continuous-time stochastic systems

7.2.1 Problem formulation

In this paper, we generalize the commonly used linear models for sensorimotor control

([50, 40, 63, 163]) by taking into account the dynamic uncertainty, or unmodeled
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dynamics. To be more specific, consider the stochastic differential equations

dw = Fwdt+Gxdt (7.16)

dx = Axdt+B1

[
zdt+ ∆1 (w, x) dt+

q1∑

i=1

E1izdη1i

]
(7.17)

dz = B2

[
udt+ ∆2 (w, x, z) dt+

q2∑

i=1

E2iudη2i

]
(7.18)

∆1 = D11w +D12x (7.19)

∆2 = D21w +D22x+D23z (7.20)

where [xT , zT ]T ∈ Rn+m is the measurable state which will be used to represent the

states of the sensorimotor system, w ∈ Rnw is the unmeasurable state of the dynam-

ic uncertainty, representing the unknown dynamics in the interactive environment,

∆1 and ∆2 are the outputs of the dynamic uncertainty, A, B1, B2, F , G, E1i with

i = 1, 2, · · · , q1, and E2i with i = 1, 2, · · · , q2 are unknown constant matrices with

suitable dimensions andB2 ∈ Rm×m is assumed to be invertiable, η1i with i = 1, 2, · · · ,

q1 and η2i with i = 1, 2, · · · , q2 are independent scalar Brownian motions, u ∈ Rm

denotes the input of the motor control command.

Design objective: Find a robust optimal feedback control policy which

1. robustly stabilizes the overall system (7.16)-(7.20), and

2. is optimal for the nominal system, i.e., the system comprised of (7.17) and

(7.18) with ∆1 ≡ 0, ∆2 ≡ 0, E1i = 0, and E2i = 0.

For this purpose, let us introduce an assumption on the dynamic uncertainty,

which is modeled by the w-subsystem.

Assumption 7.2.1. There exist S = ST > 0 and a constant γw > 0, such that

SF + F TS + I + γ−1
w SGGTS < 0. (7.21)
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Dynamic Uncertainties

Motor System

Central Nervous System

Figure 7.1: RADP framework for sensorimotor control.

Remark 7.2.1. Assumption 7.2.1 implies that the dynamic uncertainty, described by

the w-subsystem, is finite-gain L2 stable with a linear gain smaller than
√
γw , when

x is considered as the input and w is considered as the output [93].

7.2.2 Reduced-order system design

Consider the reduced-order system comprised of (7.16), (7.17), and (7.19) with z

regarded as the input. For convenience, the system is rewritten as follows:

dw = Fwdt+Gxdt (7.22)

dx = Axdt+B1

[
zdt+ ∆1 (w, x) dt+

q1∑

i=1

E1izdη1i

]
(7.23)

∆1 = D11w +D12x (7.24)

and the related nominal deterministic system is defined as

dx = Axdt+B1zdt (7.25)

∆1 = D11w +D12x (7.26)

The cost associated with the deterministic system comprised of (7.25) and (7.26)
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is selected to be

J1 =

∫ ∞

0

(
xTQ1x+ zTR1z

)
dt (7.27)

where Q1 = QT
1 ≥ 0, R1 = RT

1 > 0, and the pair (A,Q
1/2
1 ) is observable.

By linear optimal control theory [99], the optimal control policy takes the following

form

z = −R−1
1 BT

1 P1x (7.28)

where P1 = P T
1 > 0 is the solution of the following algebraic Riccati Equation (ARE):

ATP1 + P1A+Q1 − P1B1R
−1
1 BT

1 P1 = 0. (7.29)

The following concept on mean-square stability [194] will be used in the remainder

of the paper.

Definition 7.2.1. Consider the system

dx = Axdt+

q∑

i=1

Bixdηi (7.30)

where ηi with i = 1, 2, · · · , q are standard scalar Brownian motions. Then, the system

is said to be stable in the mean-square sense if

lim
t→∞

E
[
x(t)x(t)T

]
= 0. (7.31)

Now, the following theorem gives stability criteria of the closed-loop system com-

prised of (7.22), (7.23), (7.24), and (7.28).

Theorem 7.2.1. The closed-loop system comprised of (7.22), (7.23), (7.24), and

160



(7.28) is mean-square stable if

1. the weighting matrices Q1 and R1 are selected such that

Q1 > (κ12 + κ11γw) In and R1 < Im (7.32)

where κ11 = 2|D11|2 and κ12 = 2|D12|2.

2. the constant matrices E1i with i = 1, 2, · · · , q1 satisfy

q1∑

i=1

ET
1iB

T
1 P1B1E1i ≤ R1(Im −R1) (7.33)

Proof. First, we define L(·) as the infinitesimal generator [98]. Then, along the tra-

jectories of the x-subsystem, (7.23), we have

L(xTP1x) = −xT
(
Q1 + P1B1R

−1BT
1 P1

)
x+ 2xTP1B1∆1

+xTP1B1R
−1
1

q1∑

i=1

ET
1iB

T
1 P1B1E1iR

−1
1 BT

1 P1x

= −xTQ1x− |∆1 −BT
1 P

T
1 x|2dt+ |∆1|2

−xTP1B1R
−1
1

[
R1 −R2

1 −
q1∑

i=1

ET
1iB

T
1 P1B1E1i

]

×R−1
1 BT

1 P1x

≤ −xTQ1x+ |∆1|2

On the other hand, under Assumption 7.2.1, along the solutions of the w-subsystem

(7.22), we have

L
(
wTSw

)
= wT (SF + F TS)w + wTSGx+ xTGTSw

< −|w|2 − γw−1wTSGGTSw + wTSGx+ xTGTSw

< −|w|2 + γw|x|2 (∀w 6= 0)
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By definition, we know that

|∆1|2 = |D11w +D12x|2

≤ 2|D11|2|w|2 + 2|D12|2|x|2

≤ κ11|w|2 + κ12|x|2

Therefore, for all (x,w) 6= 0, the following holds

L(xTP1x+ κ11w
TSw)

< −γx|x|2 + |∆1|2 − κ11|w|2 + κ11γw|x|2

< −γx|x|2 + κ11|w|2 + 2xTDT
12D12x− κ11|w|2 + κ11γw|x|2

< −xT (Q1 − κ12In − κ11γwIn)x

< 0

Notice that V (w, x) = xTP1x+κ11w
TSw can be regarded as a stochastic Lyapunov

function [98], and the proof is thus complete.

7.2.3 Optimal control design for the full system

Now we proceed ahead to study the full system. Define the transformation

ξ = z +K1x (7.34)
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where K1 = R−1
1 BT

1 P1. Then, we have

dξ = dz +K1dx

= B2

[
udt+ ∆2dt+

q2∑

i=1

E2iudη2i

]

+K1(Acxdt+B1∆1dt+B1ξdt+B1

q1∑

i=1

E1izdη1i)

= K1Acxdt+B2udt+B2∆̄2dt+K1B1ξdt

+

q2∑

i=1

B2E2iudη2i +K1

q1∑

i=1

B1E1i (ξ −K1x) dη1i

where ∆̄2 = B−1
2 K1B1∆1 + ∆2 and Ac = A−B1K1.

Consequently, the system (7.16)-(7.20) is converted to

dw = Fwdt+Gxdt (7.35)

dx = Acxdt+B1

[
ξdt+ ∆1dt+

q1∑

i=1

E1i (ξ −K1x) dη1i

]
(7.36)

dξ = K1Acxdt+B2udt+B2∆̄2dt+K1B1ξdt

+

q2∑

i=1

B2E2iudη2i +K1

q1∑

i=1

B1E1i (ξ −K1x) dη1i (7.37)

Now, let us consider the control policy

u = −R−1
2 BT

2 P2ξ = −R−1
2 BT

2 P2

(
z +R−1

1 B1P1x
)

(7.38)

where P2 = P T
2 > 0 is the solution of the following equation

Q2 − P2B2R
−1
2 BT

2 P2 = 0 (7.39)

with Q2 and R2 two positive definite and symmetric matrices.

Remark 7.2.2. Notice that (7.39) is an ARE associated with the following optimal
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control problem

min
u

J2 =

∫ ∞

0

(
zTQ2z + uTR2u

)
dt, (7.40)

s.t. ż = B2u, (7.41)

where (7.41) is the nominal system of (7.18).

The stability criteria are given in the following theorem.

Theorem 7.2.2. The closed-loop system comprised of (7.35)-(7.37) and (7.38) is

mean-square stable if

1. the weighting matrices Q1 and R1 as defined in (7.29), and Q2 and R2 as defined

in (7.39) are selected such that R1 < Im, R2 < Im and




(κ12 + κ22 + γwκ11 + γwκ21) In − ATcKT
1 P2 − P1B1

−P2K1Ac −BT
1 P1 (κ23 + κ3) Im




<



Q1 0

0 Q2


 (7.42)

2. the constant matrices E1i and E2i satisfy the following inequalities

q1∑

i=1

ET
1iB

T
1

(
P1 +KT

1 P2K1

)
B1E1i ≤

1

2
R1 (Im −R1) (7.43)

q2∑

i=1

ET
2iB

T
2 P2B2E2i ≤ R2 (Im −R2) (7.44)
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where

κ21 = 3|B−1
2 K1B1D11 +D21|2,

κ22 = 3|B−1
2 K1B1D12 +D22 −D23K

∗
1 |2,

κ23 = 3|D23|2,

κ3 = |2
q1∑

i=1

ET
1iB

T
1 K

T
1 P2B1K1E1i − P2K1B1 −BT

1 K
T
1 P2|

Proof. Along the trajectories of the x-subsystem (7.17), we have

L(xTP1x) ≤ −xTQ1x− xTP1B1

(
R−1

1 − Im
)
BT

1 P1x

−xTP1B1B
T
1 P1x+ 2xTP1B1(∆1 + ξ)

+ (ξ −K1x)T
q1∑

i=1

ET
1iB

T
1 P1B1E1i (ξ −K1x)

≤ −xTQ1x+ |∆1|2 + 2xTP1B1ξ

−xTP1B1

(
R−1 − Im

)
BT

1 P1x

+2xTKT
1

q1∑

i=1

ET
1iB

T
1 P1B1E1iK1x

+2ξT
q1∑

i=1

ET
1iB

T
1 PB1E1iξ

≤ −xTQ1x+ |∆1|2 + 2xTP1B1ξ

−xTKT
1

[
R1 −R2

1 − 2

q1∑

i=1

ET
1iB

T
1 P1B1E1i

]
K1x

+2ξT
q1∑

i=1

ET
1iB

T
1 P1B1E1iξ
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Then, along the trajectories of the ξ-subsystem,

L(ξTP2ξ) = 2ξTP2

(
K1Acx+B2u+B2∆̄2 +K1B1ξ

)

+

q1∑

i=1

(ξ −K1x)T ET
1iB

T
1 K

T
1 P2K1B1E1i (ξ −K1x)

+

q2∑

i=1

ξTKT
2 E

T
2iB

T
2 P2B2E2iK2ξ

= −ξT
(
Q2 − 2

q1∑

i=1

ET
1iB

T
1 K

T
1 P2K1B1E1i

)
ξ

+ξT
(
P2K1B1 +BT

1 K
T
1 P2

)
ξ

+2ξTP2K1Acx+ |∆̄2|2

+2

q1∑

i=1

xTKT
1 E

T
1iB

T
1 K

T
1 P2K1B1E1iK1x

−
q2∑

i=1

ξTKT
2

(
R2 −R2

2 − ET
2iB

T
2 P2B2E2i

)
K2ξ

Also, by definition

|∆̄2|2 = |
(
B−1

2 K1B1D11 +D21

)
w

+
(
B−1

2 K1B1D12 +D22

)
x

+D23 (ξ −K1x) |2

= |
(
B−1

2 K1B1D11 +D21

)
w

+
(
B−1

2 K1B1D12 +D22 −D23K1

)
x

+D23ξ|2

≤ κ21|w|2 + κ22|x|2 + κ23|ξ|2

Finally, along solutions of the closed-loop system (7.16)-(7.20) and (7.38), the
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following holds for all [wT , xT , zT ] 6= 0

L
[
(κ11 + κ21)wTSw + xTP1x+ ξTP2ξ

]
)

≤ −



x

ξ




T 

Q1 − (κ12 + κ22 + κ11γ + κ21γ) In ATcK

T
1 P2 + P1B1

P2K1Ac +BT
1 P1 Q2 − (κ23 + κ3) Im




×



x

ξ


− xTKT

1

(
R1 −R2

1

)
K1x

+2xTKT
1

q1∑

i=1

ET
1iB

T
1

(
P1 +KT

1 P2K1

)
B1E1iK1x

−ξTKT
2

(
R2 −R2

2 −
q2∑

i=1

ET
2iB

T
2 P2B2E2i

)
K2ξ

< 0

The proof is complete.

Remark 7.2.3. Consider the nominal system (7.35)-(7.37). In the absence of dy-

namic uncertainties (i.e., the w-subsystem is absent, ∆1 ≡ 0, ∆2 ≡ 0, E1i = 0 for

i = 1, 2, · · · , q1, and E2i = 0 for i = 1, 2, · · · , q2), the control policy (7.38) is optimal

in the sense that it minimizes the cost

J2 =

∫ ∞

0






x

ξ




T

Q̄2



x

ξ


+ uTR2u


 dt (7.45)

where

Q̄2 =




Q1 +KT
1 R1K1 ATcK

T
1 P2 + P1B1

P2K1Ac +BT
1 P1 Q2 − P2K1B1 −BT

1 K
T
1 P2


 > 0

Notice that the design methodology is different from inverse optimal control [96].

Indeed, although the weighing matrix Q̄2 cannot be arbitrary specified, it can be indi-
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rectly modified by tuning the matrices Q1, Q2, R1, and R2. In motor control systems,

Q1, Q2, and R1 are related with the weights assigned on the movement accuracy, while

R2 represents the weights assigned on the control effort.

7.2.4 Off-line policy iteration technique

In order to obtain the robust optimal control policy (7.38), we need to first solve

(7.29) and (7.39) which are nonlinear in P1 and P2, respectively. This can be done

using the following off-line policy iteration algorithm.

Algorithm 7.2.1 Offline policy iteration technique

1: Find feedback gain matrices K1,0 and K2,0, such that A − B1K1,0 and −B2K2,0

are both Hurwitz (i.e., the real parts of their eigenvalues are all negative). Let
k = 0 and

u0 = −K2,0z −K2,0K1,0x (7.46)

2: Solve P1,k from

0 = (A−B1K1,k)
TP1,k + P1,k(A−B1K1,k)

+Q1 +K1,kR1K1,k (7.47)

3: Solve P2,k from

0 = −B2K
T
2,kP2,k − P2,kB2K2,k +Q2 +KT

2,kR2K2,k (7.48)

4: Let k ← k + 1, and improve the control policy by

uk = −K2,kz −K2,kK1,kx (7.49)

where

Ki,k = R−1
i BT

i Pi,k−1, ∀i = 1, 2 (7.50)

5: Go to Step 2.

Remark 7.2.4. The proposed RADP-based online learning method requires an initial

stabilizing control policy. To be more specific, we need to know feedback gain matrices

K1,0 and K2,0, such that A− B1K1,0 and −B2K2,0 are both Hurwitz. Even if A, B1,
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and B2 are uncertain, it is still possible to find such K1,0 and K2,0 when some upper

and lower bounds of the elements in A, B1, and B2 are available. In practice, these

bounds can be estimated by the CNS during the first several trials. Take the model in

Section 4.2 as an example. In the absence of disturbances (i.e., f ≡ 0), we have

A−B1K1,0 =




0 I2

0 − b
m
I2


−




0

1
m
I2


K1,0 (7.51)

and

B2K2,0 =
1

τ
K2,0 (7.52)

Since we know that b > 0, m > 0, and τ > 0, we can choose, for example, K1,0 = [I2, 0]

and K2,0 = I2. Then, Algorithm 7.2.1 can proceed, with the resulted initial stabilizing

control policy.

Convergence of this off-line policy iteration method can be concluded in the fol-

lowing theorem. The proof is omitted here because it is a trivial extension of the

main theorem in [90].

Theorem 7.2.3. The sequences {Pi,k}, {Ki,k} with i = 1, 2 and k = 0, 1, · · · itera-

tively determined from Algorithm 7.2.1 have the following properties ∀ k = 0, 1, · · · .

1) A−B1K1,k and −B2K2,k are both Hurwitz,

2) 0 < Pi ≤ Pi,k+1 ≤ Pi,k, and

3) lim
k→∞

Ki,k = Ki, lim
k→∞

Pi,k = Pi, ∀i = 1, 2.

7.2.5 Online implementation

Here, we will show how these iteration steps can be made using online sensory data

without the need to identify the system dynamics.
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To begin with, let us consider the reduced-order system and rewrite the x-subsystem

(7.17) as

dx = (A−B1K1,k)xdt+B1(dw1 +K1,kxdt) (7.53)

where

dw1 = zdt+ ∆1dt+ Σq
i=1E1izdη1i (7.54)

represents the combined signal received by the motor plant from the input channel.

By Itô’s lemma [62], along the solutions of (7.53), it follows that

d(xTP1,kx)

= dxTP1,kx+ xTP1,kdx+ dxTP1,kdx

= xT (ATkP1,k + P1,kAk)xdt

+2(K1,kxdt+ dw1)TBT
1 P1,kx

+dwT1 B
T
1 P1,kB1dw1

= −xTQ1,kxdt

+2(K1,kxdt+ dw1)TBT
1 P1,kx

+dwT1 M1,kdw1 (7.55)

where

Ak = A−B1K1,k, (7.56)

Q1,k = Q1 +KT
1,kR1K1,k, (7.57)

M1,k = BT
1 P1,kB1. (7.58)
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Next, integrating both sides of (7.55) from t to t+ δt, we obtain

x(t+ δt)TP1,kx(t+ δt)− x(t)TP1,kx(t)

= −
∫ t+δt

t

xTQ1,kxdt+

∫ t+δt

t

dwT1 M1,kdw1

+2

∫ t+δt

t

(K1,kxdt+ dw1)TR1K1,k+1x (7.59)

We now show that given a matrix K1,k such that A − B1K1,k is Hurwitz, a pair

of matrices (P1,k, K1,k+1), with P1,k = P T
1,k > 0, satisfying (7.47) and (7.50) can be

uniquely determined without knowing A or B1 . To this end, we define the following

two operators:

P ∈ Rn×n → ν (P ) ∈ R
1
2
n(n+1)

x ∈ Rn → µ (x) ∈ R
1
2
n(n+1)

where

ν (P ) = [p11, 2p12, · · · , 2p1n, p22, 2p23, · · · , 2pn−1,n, pnn]T ,

µ (x) = [x2
1, x1x2, · · · , x1xn, x

2
2, x2x3, · · · , xn−1xn, x

2
n]T .

In addition, by Kronecker product representation [56], we have

(K1,kxdt+ dw1)TR1K1,k+1x

= [x⊗R1(K1,kxdt+ dw1)]T vec(K1,k+1).

Further, for a sufficiently large positive integer lk > 0, we define the following two
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matrices.

Ξ1,k =




∫ t1,k
t0,k

xTQ1,kxdt
∫ t2,k
t1,k

xTQ1,kxdt

...
∫ tlk,k
tlk−1,k

xTQ1,kxdt



∈ Rlk (7.60)

Θ1,k =




∫ t1,k
t0,k

dθ
(1)
1,k

∫ t2,k
t1,k

dθ
(2)
1,k

...
∫ tlk,k
tlk−1,k

dθ
(lk)
1,k



∈ Rlk×[n(n+1)+m(m+1)

2
+mn]

where θ
(i)
1,k ∈ R1×[n(n+1)+m(m+1)

2
+mn] is defined as

dθ
(i)
1,k =




µ (x(ti+1,k))− µ (x(ti,k))

−µ (dw1)

−2x⊗R1(K1,kxdt+ dw1)




T

(7.61)

and t0,k < t1,k < · · · < tlk,k are nonnegative constants denoting the time points during

the movements when uk is applied as the control policy.

Now, (7.59) implies the following compact form of linear equations

Θ1,k




ν(P1,k)

ν(M1,k)

vec (K1,k+1)




= −Ξ1,k. (7.62)

To guarantee the existence and uniqueness of the solution to (7.62), we assume

Θ1,k has full column rank for all k ∈ Z+. As a result, (7.62) can be directly solved as
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follows:




ν(P1,k)

ν(M1,k)

vec (K1,k+1)




= −(ΘT
1,kΘ1,k)

−1ΘT
1,kΞ1,k. (7.63)

Remark 7.2.5. The rank condition is in the spirit of persistency of excitation in

adaptive control and is a necessary condition for parameter convergence [60, 158]. In

practice, if Θ1,k does not satisfy the rank condition, the CNS needs to keep using the

current control policy z = −K1,kx such that more online data can be collected and

more rows can be appended into Θ1,k until the rank condition of Θ1,k is satisfied. In

addition, exploration noise can be added along with the control signal, such that the

persistency of excitation can be better achieved.

Remark 7.2.6. It is worth noticing that when the sensory noise is taken into account,

numerical errors may occur when computing the matrices Iq,k, Ixv,k, and Iu,k. Conse-

quently, the solution of (7.63) can be viewed as the least-squares solution of (7.62).

Alternatively, an approximation of the unique solution of (7.62) can be obtained using

a recursive least-squares method [111].

Similarly, for the z-subsystem, we have

z(t+ δt)TP2,kz(t+ δt)− z(t)TP2,kz(t)

= −
∫ t+δt

t

zTQ2,kzdt+

∫ t+δt

t

dwT2 M2,kdw2

+2

∫ t+δt

t

(K2,kzdt+ dw2)TR2K2,k+1z (7.64)
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where

Q2,k = Q2 +KT
2,kR2K2,k, (7.65)

M2,k = BT
2 P2,kB2, (7.66)

dw2 = udt+ ∆2dt+

q2∑

i=1

E2iudη2i. (7.67)

Further, we define matrices

Ξ2,k =




∫ t1,k
t0,k

zTQ2,kzdt
∫ t2,k
t1,k

zTQ2,kzdt

...
∫ tlk,k
tlk−1,k

zTQ2,kzdt



∈ Rlk ,

Θ2,k =




∫ t1,k
t0,k

dθ
(1)
2,k

∫ t2,k
t1,k

dθ
(2)
2,k

...
∫ tlk,k
tlk−1,k

dθ
(lk)
2,k



∈ Rlk×(2m2+m)

where

dθ
(i)
2,k =




µ(z(ti+1,k))− µ(z(ti,k))

−µ(dw2)

−2x⊗R2(K2,kzdt+ dw2)




T

∈ R1×(2m2+m). (7.68)
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Then, the unknown matrices in each iteration step can be directly solved, that is,




ν(P2,k)

ν(M2,k)

vec (K2,k+1)




= −(ΘT
2,kΘ2,k)

−1ΘT
2,kΞ2,k. (7.69)

The motor learning algorithm based on the proposed RADP theory can thus be

summarized as follows:

Algorithm 7.2.2 RADP-based motor learning algorithm

1: Apply an initial control policy in the form of (7.46), and let k = 0.
2: Collect online sensory data to compute the matrices Θi,k and Ξi,k with i = 1, 2.
3: Let k ← k + 1, and update the control policy using (7.63) and (7.69). Then,

apply the new control policy (7.49) to the motor system.
4: Go to Step 2.

Corollary 7.2.1. Suppose Θi,k is of full-column rank for all i = 1, 2 and k = 0, 1, · · · .

Then, the control policies obtained from Algorithm 7.2.2 converge to the robust optimal

control policy (7.38).

Proof. This corollary is a direct result from Theorem 7.2.3 by noticing that the ma-

trices Pi,k , Mi,k and Ki,k+1 obtained from Algorithm 7.2.1 and Algorithm 7.2.2 are

equivalent for i = 1, 2, and k = 0, 1, · · · .

Remark 7.2.7. It is worth noticing that the past measurements on dw1 and dw2 are

assumed available for online learning purpose. In the following sections, we will see

that they correspond to the combined control signals received by the muscles. These

signals can be measured by the muscle spindle and the Golgi tendon organs, and can

be transmitted to the brain via the peripheral nervous systems (PNS).
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7.3 Numerical results: ADP-based sensorimotor

control

7.3.1 Open-loop model of the motor system

We adopted the proposed ADP algorithm to model arm movements in force fields,

and to reproduce similar results observed from experiments [22, 41]. For simulation

purpose, we used the mathematical model describing two-joint arm movements [108],

as shown below.

dp = vdt (7.70)

mdv = (a− bv + f)dt (7.71)

τda = (u− a)dt+ dξ (7.72)

where p = [px, py]
T , v = [vx, vy]

T , a = [ax, ay]
T , u = [ux, uy]

T , f = [fx, fy] are two-

dimensional hand position, velocity, acceleration state, control signal, and external

force generated from the field, respectively, m denotes the mass of the hand, b is the

viscosity constant, τ is the time constant, dξ denotes the signal-dependent noise, and

is given by

dξ =



c1 0

c2 0






ux

uy


 dη1 +




0 c2

0 c1






ux

uy


 dη2 (7.73)

where η1 and η2 are two standard and independent Brownian motions, c1 > 0 and

c2 > 0 are constants describing the magnitude of the signal-dependent noise. The

values of the parameters are specified in Table 7.1.

It is worth mentioning that this model is similar to many other linear models for

describing arm movements; see, for example, [50, 40, 157, 63, 163, 182, 208], to which
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Table 7.1: Parameters of the linear model
Parameters Description Value Dimension

m Hand mass 1.3 kg
b Viscosity constant 10 N· s/m
τ Time constant 0.05 s
c1 Noise magnitude 0.075
c2 Noise magnitude 0.025

our ADP theory is also applicable.

7.3.2 Determining the initial stabilizing control policy

The proposed ADP-based online learning methodology requires an initial stabilizing

control policy. To be more specific, we need to find an initial stabilizing feedback gain

matrix K0 ∈ R2×6, such that the closed-loop matrix A−BK0 is Hurwitz. By robust

control theory [207], it is possible to find such a matrix K0 if upper and lower bounds

of the elements in both A and B are available and the pair (A,B) is stabilizable.

Indeed, these bounds can be estimated by the CNS during the first several trials.

For example, in the absence of disturbances (i.e., f ≡ 0), we have

A−BK0 =




0 I2 0

0 − b
m
I2

1
m
I2

0 0 1
τ
I2



−




0

0

1
τ
I2



K0 (7.74)

Then, the first several trials in the NF can be interpreted as the exploration

of an initial stabilizing feedback gain matrix K0, by estimating the bounds on the

parameters b, m, and τ , and solving a robust control problem. Indeed, if the CNS

finds out that b ∈ [−8, 12], m ∈ [1, 1.5], and τ ∈ [0.03, 0.07] through the first several
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trials, the feedback gain matrix K0 can thus be selected as

K0 =




100 0 10 0 10 0

0 100 0 10 0 10


 . (7.75)

Once K0 is obtained, the CNS can use the proposed ADP method to approximate

the optimal control policy.

7.3.3 Selection of the weighting matrices

Here we explain how the weighting matrices are selected in the numerical simulations.

First of all, we hypothesize that the selection of Q and R is task-dependent, i.e., the

CNS can select different weighting matrices to perform different tasks. For example,

if the subject realizes there are disturbance forces along the x-axis, the CNS can

assign more weights along that direction to increase the stiffness. This assumption is

consistent with the experimental observations by [22].

Therefore, according to the experimental data obtained in a given task, we are able

to apply data-fitting-like techniques to find appropriate weighting matrices. However,

notice that the search for appropriate symmetric weighting matrices Q ∈ R6×6 and

R ∈ R2×2 could be difficult, because they contain as many as 24 independent param-

eters. To reduce redundancy, we consider three task-dependent parameters qx > 0,

qy > 0, and θ ∈ (0, 2π], which are graphically illustrated in Figure 7.2.

Now, we assume the weighting matrices take the following forms:

Q =




T TQ0T 0 0

0 10−2T TQ0T 0

0 0 10−4T TQ0T




(7.76)

R = T TR0T (7.77)
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θ

qx
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θ

Figure 7.2: Illustration of three weighting factors. The constants qx > 0 and qy > 0
are the weights assigned by the CNS along the x′-axis and the y′-axis, respectively. θ ∈
(0, 2π] denotes the angular difference between the (x, y) and the (x′, y′) coordinates.

where

T =




cos θ sin θ

− sin θ cos θ


 , Q0 =



qx 0

0 qy


 , and R0 = I2. (7.78)

with qx > 0, qy > 0, and θ ∈ (0, 2π] to be determined according to different tasks.

Notice that the ratio between the position weights and the velocity weights is 100,

so as the ratio between the velocity weights and the acceleration weights. This ratio

is qualitatively consistent with the one used in [162].

7.3.4 Sensorimotor control in a velocity-dependent force field

We used the proposed ADP method to simulate the experiment conducted by [41].

In that experiment, human subjects were seated and asked to move a parallel-link

direct drive airmagnet floating manipulandum (PFM) to perform a series of forward

arm reaching movements in the horizontal plane. All the subjects performed reaching

movements from a start point located 0.25m away from the target. The experiment

tested human muscle stiffness and motor adaptation in a velocity-dependent force
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field (VF). The VF produced a stable interaction with the arm. The force exerted on

the hand by the robotic interface in the VF was set to be



fx

fy


 = χ




13 −18

18 13






vx

vy


 (7.79)

where χ ∈ [2/3, 1] is a constant that can be adjusted to the subject’s strength. In our

simulation, we set χ = 0.7.

Subjects in the experiment [41] first practiced in the null field (NF). Trials were

considered successful if they ended inside the target within the prescribed time 0.6±

0.1s. After enough successful trials were completed, the force field was activated

without notifying the subjects. Then, the subjects practiced in the VF until enough

successful trials were achieved. After a short break, the subjects then performed sev-

eral movements in the NF. These trials were called after-effects and were recorded to

confirm that adaptation to the force field did occur. More details of the experimental

setting can be found in [41, 47].

We first applied the proposed ADP algorithm to simulate the movements in the

NF. The simulation started with an initial stabilizing control policy that can be found

by the CNS as explained in Section 7.3.2. During each trial, we collected the online

data to update the control policy once. After enough trials, an approximate optimal

control policy in the NF can be obtained. Also, the stiffness, which is defined as

graphical depiction of the elastic restoring force corresponding to the unit displace-

ment of the hand for the subject in the force fields [22], can be numerically computed.

In addition, it can be represented in terms of an ellipse by plotting the elastic force

produced by a unit displacement [123]. We ran the simulation multiple times with d-

ifferent values of qx, qy, and θ. Then, we found that, by setting qx = 5×104, qy = 105,

and θ = 15◦, the resultant stiffness ellipse has good consistency with experimental

observations [41]. Notice that θ is a positive number in the NF. One possible expla-
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Figure 7.3: Simulated movement trajectories using the proposed learning scheme.
A, Five successful movement trajectories of one subject in the NF. B, The first five
consecutive movement trajectories of the subject when exposed to the VF. C, Five
consecutive movement trajectories of the subject in the VF after 30 trials. D, Five
independent after-effect trials.

nation is that the subject used the right hand to complete the task, and gave higher

weights on the left-hand side.

Then, we proceed with the simulations in the VF. The initial control policy here

is the approximate optimal control policy learned in the NF. Once the subject started

to realize the existence of the external force after the first trial, it is reasonable for the

CNS to modify the weights because larger penalty should be given to the displacement

along the direction of the force. It also explains why the selection of the weighting

matrices is task-dependent. Indeed, by setting qx = 7.5 × 104, qy = 2 × 105, and

θ = 60◦ for the VF, we found good consistency with experimental results [41]. The

stiffness ellipses are shown in Figure 7.5. One can compare it with the experimental

observations in [41].

After 30 trials, the feedback control gain was updated to

K30 =




355.52 30.31 89.83 −24.25 1.67 −0.24

−198.07 322.00 −5.27 95.26 −0.24 1.60




181



0 0.2 0.4 0.6
−0.5

0

0.5

time (s)

B

0 0.2 0.4 0.6
−0.5

0

0.5

1

1.5

time (s)

0 0.2 0.4 0.6
−20

0

20

time (s)

0 0.2 0.4 0.6

−10

0

10

20

time (s)

0 0.2 0.4 0.6
−0.5

0

0.5

time (s)

x
−

v
e

lo
c
it
y
 (

m
/s

)

A

0 0.2 0.4 0.6
−0.5

0

0.5

1

1.5

time (s)

y
−

v
e

lo
c
it
y
 (

m
/s

)

0 0.2 0.4 0.6

−10

0

10

time (s)

x
−

e
n

d
p

o
in

t 
fo

rc
e

 (
N

)

0 0.2 0.4 0.6

−20

0

20

time (s)

y
−

e
n

d
p

o
in

t 
fo

rc
e

 (
N

)

0 0.2 0.4 0.6
−0.5

0

0.5

time (s)

C

0 0.2 0.4 0.6
−0.5

0

0.5

1

1.5

time (s)

0 0.2 0.4 0.6

−10

0

10

time (s)

0 0.2 0.4 0.6

−20

0

20

time (s)

0 0.2 0.4 0.6
−0.5

0

0.5

time (s)

D

0 0.2 0.4 0.6
−0.5

0

0.5

1

1.5

time (s)

0 0.2 0.4 0.6

−10

0

10

time (s)

0 0.2 0.4 0.6

−20

0

20

time (s)

Figure 7.4: Simulated velocity and endpoint force curves show strong consistency
with the experimental observations by [41]. A, Simulated trajectories of one subject
in the NF. B, Simulated trajectories of the subject when first exposed into the VF.
C, Simulated trajectories of the subject in the VF after 30 trials. D, After-effect
trials. Velocity curves are shown in the first and second rows, in which bell-shaped
velocity curves along the y-axis (i.e., the movement direction) are clearly observed.
Endpoint force curves are shown in the third and fourth rows. By comparing the first
and third figures in the third row, we see subjects adapted to the VF by generating
compensation force to counteract the force produced by the field. The shapes of
the after-learning endpoint force curves are nearly identical to the experimentally
measured endpoint forces reported by [41].
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Figure 7.5: Illustration of the stiffness geometry to the VF. The stiffness in the VF
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For comparison, the optimal feedback gain matrix is provided as follows:

K∗ =




358.32 30.89 90.17 −24.15 1.67 −0.24

−200.92 324.49 −5.65 95.63 −0.24 1.60


 .

The simulated movement trajectories, the velocity curves, and the endpoint force

curves are shown in Figures 7.3 and 7.4. It can be seen that the simulated move-

ment trajectories in the NF are approximately straight lines, and the velocity curves

along the y-axis are bell-shaped curves. These simulation results are consistent with

experimental observations as well as the curves produced by the previous models

[120, 40, 162]. After the subject was exposed to the VF, the first trial was simulated

with the same feedback control policy as in the NF. This is because subjects in the

experiment were not notified when the external force was activated. Apparently, this

control policy was not optimal because the system dynamics was changed and the

cost function was also different. Then, the ADP algorithm proceeded. In Figure 7.3,

we see the first trial gives a movement trajectory which deviated far away from the

straight path but eventually reached the target. Motor adaptation can be observed

by comparing the first five consecutive trials. After 30 trials, the movement trajec-

tories return to be straight lines, and the velocity curves become bell-shaped again.

It implies that after 30 trials in the VF, the CNS can learn well the optimal control

policy using real-time data, without knowing or using the precise system parameters.

Finally, our numerical study shows clearly the after-effects of the subject behavior

when the VF was suddenly de-activated.

To better illustrate the learning behavior in the VF, we define the movement time

tf of each trial as the time duration from the beginning of the trial until the hand-

path enters and remains in the target area. Then, the movement times and distance

were calculated and are shown in Figure 7.6.
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7.3.5 Sensorimotor control in a divergent field

Now, let us describe how we simulated the sensorimotor control system in a divergent

field (DF) using the proposed ADP theory. In the experiment conducted by [22], the

DF produced a negative elastic force perpendicular to the target direction, and was

computed as

f =



β 0

0 0






px

0


 (7.80)

where β > 0 is a sufficiently large constant such that the overall system is unstable.

In our simulations, we set β = 150.

The simulation of the movements before the DF was applied is identical to the

one described in the previous subsection, and an approximate optimal control policy

in the NF has been obtained. However, this control policy is not stabilizing in the

DF, and therefore an initial stabilizing control policy in the DF is needed. To be

more specific, we need a matrix K0 ∈ R2×6 such that

A−BK0 =




0 0 1 0 0 0

0 0 0 1 0 0

β
m

0 − b
m

0 1
m

0

0 0 0 − b
m

0 1
m

0 0 0 0 1
τ

0

0 0 0 0 0 1
τ




−




0 0

0 0

0 0

0 0

1
τ

0

0 1
τ




K0 (7.81)

is Hurwitz.

Therefore, we applied the same control policy learned in the NF to control the

movements for the first five trials in the DF. As a result, unstable behaviors were

observed in the first several trials (see Figure 7.8 B). Then, a stabilizing feedback
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control gain matrix K0 was assumed available to the CNS, since the CNS has esti-

mated the range of the unknown parameters β, b, m, and τ , and should be able to

find K0 by solving a robust control problem. Here, we increased the first entry in the

first row of the matrix K̂nf by 300 and set the resultant matrix to be K0, which is

stabilizing. Then, we applied the proposed ADP algorithm with this K0 as the initial

stabilizing feedback gain matrix. Of course, K0 can be selected in different ways.

Some alternative models describing the learning process from instability to stability

can also be found in [42, 160, 199, 208].

To obtain appropriate weighting matrices in the DF, we set qx = 1.5× 105, qy =

105, and θ = 15◦. This set of values can give good consistency between our simulation

results and the experimental results [22]. Intuitively, we conjecture that the CNS

increased the stiffness along the y-axis by assigning more weights to deal with the

divergent force. Then, the stiffness ellipses can be numerically shown as in Figure

7.7. One can compare them with the experimental results reported by [22].

It can be seen in Figures 7.8 and 7.9 that the simulated movement trajectories in

the NF are approximately straight lines and their velocity curves are bell-shaped. It

is easy to notice that the movement trajectories differ slightly from trial to trial. This

is due to the motor output variability caused by the signal-dependent noise. When

the subject was first exposed to the DF, these variations were further amplified by

the DF. As a result, unstable behaviors were observed in the first several trials.

In Figures 7.8 and 7.9, it is clear that, a stabilizing control policy is obtained, the

proposed ADP scheme can be applied to generate an approximate optimal control

policy. After 30 trials, the hand-path trajectories became approximately straight as

in the NF. It implies that the subject has learned to adapt to the dynamics of the
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DF. Indeed, after 30 trials in the DF, the feedback gain matrix has been updated to

K30 =




848.95 15.73 95.60 2.67 1.69 0.05

24.12 319.04 2.60 62.65 0.05 1.27


 .

For comparison purpose, the optimal feedback gain matrix for the ideal case with

no noise is shown below:

K∗df =




853.67 15.96 96.07 2.70 1.70 0.05

24.39 321.08 2.63 62.86 0.05 1.27


 .

Finally, we simulated behavior of the subject when the force field is unexpectedly

removed. From our simulation results, it is clear to see that the movement trajectories

are even straighter than the trajectories in the NF. This is because the CNS has

modified the weighting matrices and put more weights on the displacement along the

x-axis. As a result, the stiffness ellipses in the NF and DF are apparently different,

because the stiffness increased significantly in the direction of the divergence force.

The change of stiffness along the movement direction is not significant, as shown

in our simulations. These characteristics match well the experimental observations

[22, 41].

Again, our simulation results show that the CNS can learn and find an approxi-

mate optimal control policy using real-time data, without knowing the precise system

parameters.

7.3.6 Fitts’s Law

According to [39], the movement duration tf required to rapidly move to a target

area is a function of the distance d to the target and the size of the target s, and

a logarithmic law is formulated to represent to the relationship among the three
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Figure 7.9: Simulated velocity and endpoint force curves using the proposed learning
scheme. A, Simulated trajectories of one subject in the NF. B, Simulated trajectories
of the subject when first exposed into the DF. Some trials were terminated earlier
than 0.6s because they went out of the save zone. C, Simulated trajectories of the
subject in the divergent force field after 30 trials. D, After-effect trials. Velocity
curves are shown in the first and second rows, in which bell-shaped velocity curves
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curves are shown in the third and fourth rows, in which we see subjects adapted to
the DF by generating compensation force in the x-direction to counteract the force
produced by the DF. In addition, the endpoint force curves are nearly identical to
the experimentally measured data [22].
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Table 7.2: Data fitting for the log law and power law

Parameters NF VF DF

a (Log law) 0.0840 0.1137 0.0829
b (Log law) 0.0254 -0.0376 0.0197
a (Power law) 0.3401 0.4101 0.3468
b (Power law) -1.7618 -1.7796 -1.8048

variables tf , d, and s as follows

tf = a+ b log2

(
d

s

)
(7.82)

where a and b are two constants. In 1998, [138] proposed the following power law:

tf = a

(
d

s

)b
. (7.83)

Here we validated our model by using both the log law and the power law. The

target size s is defined as its diameter, and the distance is fixed as d = 0.24m. We

simulated the movement times from the trials in the NF, the after-learning trials in

the VF and DF. The data fitting results are shown in Figure 7.10 and Table 7.2. It

can be seen that our simulation results are consistent with Fitts’s law predictions.

7.4 Numerical results: RADP-based sensorimotor

control

In this section, we apply the proposed RADP algorithm to model arm movements in a

divergent force field, and arm movements in a velocity-dependent force field. However,

different from the previous section, we assume the mechanical device generating the

forces was subject to certain-time delay. Therefore, the dynamics of the mechanical

device is treated as the dynamic uncertainty. We will also compare our simulation
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Figure 7.11: Simulations of hand trajectories in the divergent force field using the
proposed RADP based learning scheme. Movements originate at (0,−0.25m) and
the target is located at (0, 0). A. Simulated hand trajectories during initial exposure
to the force field. B. Simulated hand trajectories after 30 trials. C. Simulated speed
curves before learning. D. Simulated speed curves after learning.

results with experimental observations [22, 41, 142].

We adopt the proposed RADP algorithm to model arm movements in force fields,

and to reproduce similar results observed from experiments [22, 41]. The mathemat-

ical model for the motor system is the same as (7.70)-(7.72), with the parameters

given in Table 7.1.

7.4.1 Divergent force field with time-delay

Let us describe how we simulated the sensorimotor control system in a divergent field

(DF) using the proposed RADP theory. To generate such a force field, we consider

the following system.

d



fx

fy


 = −



τf 0

0 τf




−1




fx

fy


−



β 0

0 0






px

py





 dt (7.84)
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where β > 0 is a sufficiently large constant such that the closed system is unstable

with the initial control policy. System (7.89) is suitable to model the dynamics of

divergent force field used by [22, 41] with the time constant τf > 0 describing the

time-delay of the physical device which generated the force field.

In our simulation, the subject first practiced in the null field (NF) with an initial

control policy obtained as described in Remark 7.2.4. Then, we simulated the scenario

that the CNS implement the proposed RADP method with respect to the following

weighting matrices

Q1 =




500 0 0 0

0 1000 0 0

0 0 0.1 0

0 0 0 0.1



, Q2 = I2,

R1 = R2 =




0.1 0

0 0.1


 . (7.85)

The force field was simulated with β = 230. After enough trials, we turned on the

divergent force. Then, the overall system became unstable.

After the CNS became aware of the divergent force, the RADP algorithm was

applied to update the control policy using the online sensory data to find a new

robust optimal control policy with respect to the following cost

Q1 =




104 0 0 0

0 1000 0 0

0 0 1 0

0 0 0 1



, Q2 = I2,

R1 = R2 =




0.1 0

0 0.1


 . (7.86)
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with the initial stiffness (green).

The before-learning and after-learning movement trajectories are shown in Figure

7.11. It can be seen that, stability can be recovered after applying the RADP-based

learning schemes, and the hand-path trajectories became approximately straight. It

implies that the subject has learned adapting to the dynamics of the DF. It is also

worth pointing out that the learning algorithm does not require the precise dynamics

of the sensorimotor system or the dynamic uncertainty.

Our model suggests a time-invariant control policy. Consequently, it is straight-

forward to study the change of muscle stiffness before and after learning. Indeed, the

compensation force caused by displacement after-learning can be calculated as:

∆fdf = −




1000 0

0 316.2278







∆px

∆py


 (7.87)
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In contrast, before the learning starts, the compensation force was

∆fnf = −




223.6068 0

0 316.2278







∆px

∆py


 (7.88)

Now, the stiffness, defined as a graphical depiction of the elastic restoring force

corresponding to the unit displacement of the hand for the subject in the force fields

[22, 41], can be numerically computed. In addition, it can be presented in terms of an

ellipse by plotting the elastic force produced by a unit displacement [123]. In Figure

7.12, we plotted the stiffness ellipses. It can be seen that the difference between the

stiffness ellipses before and after learning is a direct result from the changes in both

the weighting matrices and the system dynamics.

7.4.2 Velocity-dependent force field with time delay

Now, we use the proposed RADP method to simulate the experiment conducted by

[142]. We model the velocity-dependent force field using the following dynamic system

d



fx

fy


 = −



τf 0

0 τf




−1

×






fx

fy


−



−10.1 −11.2

−11.2 11.1






vx

vy





 dt (7.89)

In the experiment [142], each subject was asked to move a cursor from the center of

a workspace to a target at an angle randomly chosen from the set {0◦, 45◦, · · · , 315◦},

and at a distance of 0.1m. After one target was reached, the next target, randomly

selected, was presented.

There were four different stages in the experiment. First, the subject made arm

movements without the force field. Second, the force field was applied without no-

tifying the subject. Third, the subject adapted to the force field. Finally, the force

field was suddenly removed and the after-learning effects were observed.
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Figure 7.13: Simulation of hand trajectories in the velocity-dependent force field using
the proposed RADP based learning scheme. Movements originate at the center. A.
Simulation of hand trajectories in the null force field. B. Simulated Performance
during initial exposure to the force field. C. Simulated hand trajectories in the force
field after 30 trials. D. Simulated aftereffects of adaptation to the force field.
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Before the force field was activated, the initial control policy we assumed was

the same as the one in the previous simulation. Once the CNS noticed the velocity-

dependent field, the new weighting matrices was replaced by

Q1 =




104 0 0 0

0 1000 0 0

0 0 1 0

0 0 0 1



, Q2 = I2,

R1 = R2 =




0.1 0

0 0.1


 . (7.90)

The movement performance in the four different stages were simulated using the

proposed RADP algorithm and the results are given in Figure 7.13. In addition, we

plotted the velocity curves of the arm movement during the first three stages as shown

in Figure. Interestingly, consistency can be found by comparing Figure 7.14 in this

paper with Figure 10 in [142].

7.5 Discussion

7.5.1 Non-model-based learning

Most of the previous models for sensorimotor control have concluded that the CNS

knows precisely the knowledge of the motor system and its interacting environment

[33, 40, 50, 77, 131, 140, 163, 162, 165]. The computation of optimal control laws is

based on this assumption. By contrast, the proposed ADP methodology is a non-

model-based approach and informs that the optimal control policy is derived using

the real-time sensory data and is robust to dynamic uncertainties such as signal-

dependent noise. In the absence of external disturbances, our model can generate
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Figure 7.14: Hand velocities before and after adaptation to the force field. The curves,
from the first row to the eight row, are for targets at 0◦, 45◦, · · · , 315◦. A, hand
velocities in a null field before exposure to the force field. B, hand velocities upon
initial exposure to the force field. C, hand velocities after adaptation to the force
field.
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typically observed position, velocity, and endpoint force curves as produced by the

previous models. As one of the key differences with existing sensorimotor models, our

proposed computational mechanism suggests that, when confronted with unknown en-

vironments and imprecise dynamics, the CNS may update and improve its command

signals for movement through learning and repeated trials.

In the presence of perturbations, most of the previous models have relied on sen-

sory prediction errors to form an estimate of the perturbation [9, 92, 195]. However,

this viewpoint is difficult to be justified theoretically and has not been convincingly

validated by experiments. Indeed, evidence against this source-identified adaptation

is reported by [59], where a self-generated perturbation was created but it was not

identified or used in formulating the control policy. This is consistent with the learn-

ing scheme we proposed in this paper. Indeed, our ADP-based learning scheme does

not identify the dynamics of the force fields. Instead, optimal control policies in

the presence of force fields are directly obtained through successive approximations.

By simulating the experiments conducted by [22] and [41], we have found that our

computational results match well with the experimental results. In particular, our

simulation results show gradual adaptation to the unknown force fields, with nearly

identical movement trajectories in the first several consecutive trials reported in the

experiment [41]. The simulated post-learning velocity and endpoint force curves fit

well with the experimental observations [22, 41]. Our simulations clearly demonstrat-

ed the after-effects phenomenon.

7.5.2 Stability and convergence properties

Several reinforcement-learning-based models for motor adaptation have been devel-

oped in the past literature [35, 64]. However, it is not easy to analyze the convergence

and the stability properties of the learning schemes. In this paper, we have extended

the ADP theory to continuous-time linear systems with signal-dependent noise, and
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applied this theory to model sensorimotor control. An added value of the proposed

ADP methodology is that rigorous convergence and stability analysis is given and is

surprisingly simple by means of linear optimal control theory.

7.5.3 Muscle stiffness

Several practical methods for experimentally measuring stiffness have been proposed

in the past literature [21, 47, 54], and the changes of stiffness in force fields were

reported by [22] and [41]. However, how the CNS modifies the stiffness geometry

and achieves optimal motor behavior remains a largely open question. [22] suggested

that the CNS minimizes the hand-path error relative to a straight line joining the

start position and the target center. This optimization problem does not involve any

system dynamics, and cannot link the modification of stiffness to optimal feedback

control theory. On the other hand, the stiffness may not be well analyzed using other

models based on finite-horizon optimal control theory (see, for example, [162, 50]).

This is because those models use time-varying control policies, leading to continuous

change of the stiffness during the movement.

In the ADP-based model, time-invariant control policies are computed, and it is

comparably easy to analyze the muscle stiffness by studying the position feedback

gains. Our modeling methodology implies that the change of stiffness results from

the modification of the weighing matrices by the CNS and the change of the system

dynamics. Indeed, our simulation results provide similar stiffness ellipses as those

measured in experiments [22, 41]. In addition, our model suggests that different stiff-

ness geometries of different individuals may be a consequence of different weighting

matrices they selected. Therefore, compared with other models of motor control and

motor adaptation, our modeling strategy can explain naturally the change of stiffness

observed in experiments from the viewpoint of optimal feedback control [99].
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7.5.4 Data fitting for the weighting matrices

The weighting matrices we used in the numerical simulation are selected such that our

resultant computational results can have qualitative consistency with experimental

results [22, 41]. If accurate human motor data become available, better fits for the

weights can be obtained using a two-loop optimization approach [65]. The inner-loop

uses the proposed ADP method to approximate an optimal control policy and gen-

erate the stiffness ellipses. The outer-loop compares the error between the simulated

stiffness ellipses with experimental observations and adjusts the parameters qx, qy,

and θ to minimize the error.

7.5.5 Infinite-horizon optimal control

During each trial, a time-invariant control policy is suggested in our methodology.

The time-invariant control policy has a main advantage that movement duration does

not need to be pre-fixed by the CNS. This seems more realistic because the duration

of each movement is different from each other due to the signal-dependent noise and

is difficult to be pre-fixed. [163] suggested that if the target is not reached at the

predicted reaching time, the CNS can similarly plan an independent new trajectory

between the actual position of the hand and the final target, and the final trajectory

will be the superposition of all the trajectories. By contrast, our model matches the

intuitive notion that the motor system keeps moving the hand toward the target until

it is reached, and much less computational burden is required. Our simulation results

match well with Fitts’s law predictions. In addition, this type of control policies can

also be used to analytically derive the Fitts’s law as illustrated by [131].
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7.5.6 Comparison with iterative learning control

Iterative learning control (ILC) is an open-loop control scheme that iteratively learns

a feedforward signal based on the tracking error of the previous trials [20]. It has

also been used to model motor learning [208]. Compared with ILC, the ADP-based

learning method has at least three advantages. First, conventional ILC method uses

open-loop control policy for each individual trial. Hence, it may not explain the feed-

back control mechanism involved in each individual movement, which is essential in

generating bell-shaped velocity-curves. Second, ILC assumes the external disturbance

is iteration invariant. However, motor uncertainties do not satisfy this assumption,

since no two movements are exactly the same. Third, in the ILC model, learning only

happens among different trials. Therefore, it cannot model the online learning during

a single trial. On the other hand, this online learning process can be modeled by our

ADP method, since the ADP scheme gives the flexibility to specify the amount of

time that is needed for collecting online data and updating the control policy. Indeed,

if the time duration is set to be less than the time needed for one trial, then online

learning during one movement can be simulated.

7.5.7 Connection between optimality and robustness

Although optimal control theory is the dominant paradigm for understanding motor

behavior, and optimization based models can explain many aspects of sensor motor

control, it is not clear if the CNS keeps using the optimal control policy when dynamic

uncertainty occurs. Experimental results obtained by [59] show that the control

scheme employed by the CNS in the presence of external disturbances may only be

sub-optimal because the control scheme they observed experimentally is not energy

efficient. Indeed, in the presence of dynamic uncertainties, guaranteeing optimality

and stability becomes a nontrivial task.

The RADP studies the stability of interconnected systems by analyzing the gain
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conditions (7.32), (7.33), and (7.42)-(7.44), which are inspired by a simplified version

of the nonlinear small-gain theorem [83]. As shown previously, these conditions can

be satisfied by choosing suitable cost functions with appropriately designed weighting

matrices [69]. It should be mentioned that the control policy generated from our

RADP method is optimal for the nominal/reduced system, and remains stable and

retains suboptimality in the presence of dynamic uncertainty. The change of stiffness

in the divergent force field was reported by [22]. However, they assumed that the

stiffness was modified to minimize some cost function associated with the minimum-

jerk model [40] which does not involve optimal feedback control theory. Alternatively,

in the RADP theory, the change of stiffness can be interpreted as a direct result of

the change of weighting matrices.

Hence, the proposed RADP theory is compatible with the optimal control theory

and the experimental results observed in the past literature. More importantly, it

provides a unified framework that naturally connects optimality and robustness to

explain the motor behavior with/without uncertainties.

7.6 Conclusions

We have developed ADP and RADP methods for linear stochastic systems with signal-

dependent noise with an objective to model goal-oriented sensorimotor control sys-

tems. An appealing feature of this new computational mechanism of sensorimotor

control is that the CNS does not rely upon the a priori knowledge of systems dynamics

and the environment to generate a command signal for hand movement. Our theory

can explain the change of stiffness geometry from a perspective of adaptive optimal

feedback control versus nonadaptive optimal control theory [131, 163, 162]. In par-

ticular, the RADP theory not only gives computational results which are compatible

with experimental data [22, 41, 142], but also provides a unified framework to study
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robustness and optimality simultaneously. We therefore argue that the human motor

system may use ADP and RADP-like mechanisms to control movements.
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Chapter 8

Conclusions and future work

8.1 Conclusions

This dissertation has proposed our recent contributions to the new framework of

RADP and illustrated its potential applications. The major contributions of this

dissertation can be summarized from two aspects.

On one hand, developing ADP-based methodology for the continuous-time (CT)

setting with completely unknown dynamics is a challenging topic. Indeed, although

the action-dependent heuristic dynamic programming [189] (or Q-learning [181]) does

not depend on the discrete-time (DT) system, it cannot be directly applied for solving

CT problems, such as the problems addressed in this dissertation. One major reason is

that the structures of CT algebraic Riccati equations (AREs) or the Hamilton-Jacobi-

Bellman (HJB) equations are significantly different from their DT counterparts. This

dissertation has introduced a novel computational policy iteration approach we devel-

oped recently [68]. It finds online adaptive optimal controllers for CT linear systems

with completely unknown system dynamics, and solves the ARE iteratively using

system state and input information collected online, without knowing the system ma-

trices. This objective is achieved by taking advantages of the exploration noise. This
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methodology has been further extended for affine nonlinear systems. An immediate

result has been obtained by using neural networks (NNs) to approximate online the

cost function and the new control policy [75]. We have provided rigorous proofs on

the convergence property of this method. However, NNs-based approximation can

only be effective on some compact set, and it is generally not trivial to determine the

type of basis functions to achieve good approximation performance. Therefore, we

have proposed for the first time the idea of global adaptive dynamic programming

(GADP), which finds a suboptimal control policy but provides global stability and

gives rise to computational efficiency.

On the other hand, in the past literature of ADP, it is commonly assumed that

both the system order is known and the state variables are perfectly measurable.

These two conditions are generally restrictive and are needed to be relaxed in further

research. In addition, it is widely recognized that, besides maximizing the reward

from the environment, biological systems learn to achieve enhanced robustness (or

greater chance of survival) through interacting with the unknown environment, and

they may only be able to make decisions based on partial-state information due to

the complexity of the real-world environment. This dissertation bridges the gap in

the past literature of ADP where dynamic uncertainties or unmodeled dynamics were

not addressed. In this dissertation, two strategies have been introduced to achieve

robust stabilization in the presence of dynamic uncertainties. First, for partially

linear systems [75] and weakly nonlinear large-scale systems [70], we have derived

conditions on the weighting matrices for the performance indices for each nominal

system. These conditions are in spirit of the small-gain theorem [83]. Second, for

affine nonlinear systems which interact with nonlinear dynamic uncertainties, we have

employed the robust redesign technique [83, 129] and the Lyapunov-based small-gain

theorem [81]. This methodology has been used to redesign the approximate optimal

control policy obtained using the NN-based approximation to achieve robust optimal
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stabilization [75]. Also, it has been employed to redesign the suboptimal control

policy obtained using the SOS-based policy iteration, such that global robust and

suboptimal stabilization can be achieved [71].

We have applied the proposed online learning methodologies for engineering appli-

cations. In particular, the RADP method finds good applications in power systems

related control problems. Simulations for a two-machine and a ten-machine pow-

er systems have been been provided to show the efficiency and effectiveness of the

proposed algorithms. Further, since RADP shares many essential features with rein-

forcement learning, we found it is reasonable to use RADP as a reverse-engineering

approach to model human motor control and learning. To this end, we have developed

RADP-based learning methods to study stochastic systems with control-dependent

noise, and use these methods to numerically reproduce experimental results obtained

in [22, 41, 142]. Observing the strong consistency of numerical results with experi-

mental data, we argue that the central nervous system (CNS) may use RADP-like

mechanisms to coordinate movements in the presence of static and/or dynamic un-

certainties.

8.2 Future work

A gap has been bridged by the development of the RADP framework, in which dy-

namic uncertainty is taken into account. However, compared with a true brain-like

intelligent learning control system, results presented in this dissertation are only the

tips of an iceberg. Quite a few interesting and exciting related topics deserve further

research. For example, the following are some of the directions for continuation of

this work.

1. Extending the current results on GADP for more generalized nonlinear systems,

such as nonaffine nonlinear systems [14].
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2. Gaining more insights into understanding the rank condition and its relations

with the exploration noise.

3. Developing output-feedback-based RADP theory (see [46] for some preliminary

results).

4. Extending the current ADP and RADP methodologies for nonlinear stochas-

tic systems, and apply them to more realistic models to study human motor

learning (see [14, 15] for some preliminary results ).

5. Enriching the features of ADP and RADP theories by incorporating more

biologically-inspired learning behaviors.

6. Developing RADP-based tracking methods to achieve online tracking with both

static and dynamic uncertainties.

7. Quantifying the sub-optimality in the presence of dynamic uncertainties.

Finally, the author believes that the RADP theory developed in this thesis has nu-

merous potential applications in practical engineering systems and reverse-engineering

problems. In addition to further developing and refining the theory of RADP, it is also

important to study the practical implementation issues for real-world applications.
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Chapter 9

Appendices

9.1 Review of optimal control theory

9.1.1 Linear quadratic regulator (LQR) for CT linear sys-

tems

Consider a CT linear system described by

ẋ = Ax+Bu (9.1)

where x ∈ Rn is the system state fully available for feedback control design; u ∈ Rm

is the control input; A ∈ Rn×n and B ∈ Rn×m are unknown constant matrices. In

addition, the system is assumed to be stabilizable.

The design objective is to find a linear optimal control law in the form of

u = −Kx (9.2)
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which minimizes the following performance index

J =

∫ ∞

0

(xTQx+ uTRu)dt, x(0) = x0 ∈ Rn, (9.3)

where Q = QT ≥ 0, R = RT > 0, with (A,Q1/2) observable.

By linear optimal control theory [103], when both A and B are accurately known,

solution to this problem can be found by solving the following well-known algebraic

Riccati equation (ARE)

ATP + PA+Q− PBR−1BTP = 0. (9.4)

If the pair (A,B) is stabilizable and the pair (A,Q1/2) is observable, (9.4) has a

unique symmetric positive definite solution P ∗. The optimal feedback gain matrix

K∗ in (9.2) can thus be determined by

K∗ = R−1BTP ∗. (9.5)

Notice that the optimal feedback gain matrix K∗ does not depend on the initial

condition x0.

9.1.2 Nonlinear optimal control for CT affine nonlinear sys-

tems

Consider the nonlinear system

ẋ = f(x) + g(x)u (9.6)

where x ∈ Rn is the system state, u ∈ Rm is the control input, f(x) and g(x) are

locally Lipschitz functions with f(0) = 0.
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In classical nonlinear optimal control theory [103], the common objective is to find

a control policy u that minimizes certain performance, which takes, for example, the

following form.

J(x0, u) =

∫ ∞

0

r(x(t), u(t))dt, x(0) = x0 (9.7)

where r(x, u) = Q(x) + uTRu, with Q(x) a positive definite function, and R is a

symmetric positive definite matrix. Notice that, the purpose of specifying r(x, u) in

this form is to guarantee that an optimal control policy can be explicitly determined,

if it exists.

Now, suppose there exists V o ∈ P , such that the Hamilton-Jacobi-Bellman (HJB)

equation holds

H(V o) = 0 (9.8)

where

H(V ) = ∇V T (x)f(x) +Q(x)− 1

4
∇V T (x)g(x)R−1gT (x)∇V (x).

Then, it is easy to see that V o is a well-defined Lyapunov function for the closed-

loop system comprised of (9.6) and

uo(x) = −1

2
R−1gT (x)∇V o(x). (9.9)

Hence, this closed-loop system is globally asymptotically stable at x = 0 [86].

Then, according to [141, Theorem 3.19], uo is the optimal control policy, and the

value function V o(x0) gives the optimal cost at the initial condition x(0) = x0, i.e.,

V o(x0) = min
u
J(x0, u) = J(x0, u

o), ∀x0 ∈ Rn. (9.10)
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It can also be shown that V o is the unique solution to the HJB equation (9.8)

with V o ∈ P . Indeed, let V̂ ∈ P be another solution to (9.8). Then, by Theorem

3.19 in [141], along the solutions of the closed-loop system composed of (9.6) and

u = û = −1
2
R−1gT∇V̂ , it follows that

V̂ (x0) = V o(x0)−
∫ ∞

0

|uo − û|2Rdt, ∀x0 ∈ Rn. (9.11)

Finally, comparing (9.10) and (9.11), we conclude that V o = V̂ .

9.2 Review of ISS and the nonlinear small-gain

theorem

Here we review some important tools from modern nonlinear control; see, for instance,

[61, 83, 80, 86, 114, 150], and references therein for the details. See [85] for more recent

developments in nonlinear systems and control.

Consider the system

ẋ = f(x, u) (9.12)

where x ∈ Rn is the state, u ∈ Rm is the input, and f : Rn × Rm → Rn is locally

Lipschitz.

Definition 9.2.1 ([148, 149]). The system (9.12) is said to be input-to-state stable

(ISS) with gain γ if, for any measurable essentially bounded input u and any initial

condition x(0), the solution x(t) exists for every t ≥ 0 and satisfies

|x(t)| ≤ β(|x(0)|, t) + γ(‖u‖) (9.13)

where β is of class KL and γ is of class K.
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Definition 9.2.2 ([151]). A continuously differentiable function V is said to be an

ISS-Lyapunov function for the system (9.12) if V is positive definite and proper, and

satisfies the following implication:

|x| ≥ χ(|u|)⇒ ∇V (x)Tf(x, u) ≤ −κ(|x|) (9.14)

where κ is positive definite and χ is of class K.

Next, consider an interconnected system described by

ẋ1 = f1(x1, x2, v), (9.15)

ẋ2 = f2(x1, x2, v) (9.16)

where, for i = 1, 2, xi ∈ Rni , v ∈ Rnv , fi : Rn1 ×Rn2 ×Rnv → Rni is locally Lipschitz.

Assumption 9.2.1. For each i = 1, 2, there exists an ISS-Lyapunov function Vi for

the xi subsystem such that the following hold:

1. there exist functions αi, ᾱi ∈ K∞, such that

αi(|xi|) ≤ Vi(xi) ≤ ᾱi(|xi|), ∀xi ∈ Rni ; (9.17)

2. there exist class K functions χi, γi and a class K∞ function αi, such that

∇V1(x1)Tf1(x1, x2, v) ≤ −α1(V1(x1)), (9.18)

if V1(x1) ≥ max{χ1(V2(x2)), γ1(|v|)}, and

∇V2(x2)Tf2(x1, x2, v) ≤ −α2(V2(x2)), (9.19)

if V2(x2) ≥ max{χ2(V1(x1)), γ2(|v|)}.
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Based on the ISS-Lyapunov functions, the following theorem gives the small-gain

condition, under which the ISS property of the interconnected system can be achieved.

Theorem 9.2.1 ([81]). Under Assumption 9.2.1, if the following small-gain condition

holds:

χ1 ◦ χ2(s) < s, ∀s > 0, (9.20)

then, the interconnected system (9.15), (9.16) is ISS with respect to v as the input.

Under Assumption 9.2.1 and the small-gain condition (9.20), Let χ̂1 be a function

of class K∞ such that

1. χ̂1(s) ≤ χ−1
1 (s), ∀s ∈ [0, lim

s→∞
χ1(s)),

2. χ2(s) ≤ χ̂1(s), ∀s ≥ 0.

Then, as shown in [81], there exists a class K∞ function σ(s) which is continuously

differentiable over (0,∞) and satisfies dσ
ds

(s) > 0 and χ2(s) < σ(s) < χ̂1(s), ∀s > 0.

In [81], it is also shown that the function

V12(x1, x2) = max{σ(V1(x1)), V2(x2)} (9.21)

is positive definite and proper. In addition, we have

V̇12(x1, x2) < 0 (9.22)

holds almost everywhere in the state space, whenever

V12(x1, x2) ≥ η(|v|) > 0 (9.23)

for some class K∞ function η.
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9.3 Matlab code for the simulation in Chapter 2

For the readers’ convenience, here I put the MATLAB code for the very first simu-

lation in the dissertation. All the other simulations can be made using the same

techniques. A few other available MATLAB programs can be found on the au-

thor’s personal website at http://files.nyu.edu/yj348/public/index.html. They are

also available upon request.

% Code for the paper "Computational adaptive optimal control with an

% application to a car engine control problem", Yu Jiang and Zhong-Ping

% Jiang,vol. 48, no. 10, pp. 2699-2704, Oct. 2012.

% \copyright Copyright 2011-2014 Yu Jiang, New York University.

function []=engine_main()

clc;

x_save=[];

t_save=[];

flag=1; % 1: learning is on. 0: learning is off.

% System matrices used for simulation purpose

A=[-0.4125 -0.0248 0.0741 0.0089 0 0;

101.5873 -7.2651 2.7608 2.8068 0 0;

0.0704 0.0085 -0.0741 -0.0089 0 0.0200;

0.0878 0.2672 0 -0.3674 0.0044 0.3962;

-1.8414 0.0990 0 0 -0.0343 -0.0330;

0 0 0 -359 187.5364 -87.0316];

B=[-0.0042 0.0064

-1.0360 1.5849

0.0042 0;

0.1261 0;

0 -0.0168;

0 0];

[xn,un]=size(B);%size of B. un-column #, xn row #

% Set the weighting matrices for the cost function

Q=diag([1 1 0.1 0.1 0.1 0.1]);

R=eye(2);
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% Initialize the feedback gain matrix

K=zeros(un,xn); % Only if A is Hurwitz, K can be set as zero.

N=200; %Length of the window, should be at least greater than xn^2

NN=10; %Max iteration times

T=.01; %Duration of time for each integration

%x0=[10;2;100;2;-1;-2]; %Initial condition

x0=[10;2;10;2;-1;-2];

i1=(rand(1,100)-.5)*1000;

i2=(rand(1,100)-.5)*1000;

Dxx=[];XX=[];XU=[]; % Data matrices

X=[x0;kron(x0’,x0’)’;kron(x0,zeros(un,1))]’;

% Run the simulation and obtain the data matrices \delta_{xx}, I_{xx},

% and I_{xu}

for i=1:N

% Simulation the system and at the same time collect online info.

[t,X]=ode45(@mysys, [(i-1)*T,i*T],X(end,:));

%Append new data to the data matrices

Dxx=[Dxx;kron(X(end,1:xn),X(end,1:xn))-kron(X(1,1:xn),X(1,1:xn))];

XX=[XX;X(end,xn+1:xn+xn^2)-X(1,xn+1:xn+xn^2)];

XU=[XU;X(end,xn+xn^2+1:end)-X(1,xn+xn^2+1:end)];

% Keep track of the system trajectories

x_save=[x_save;X];

t_save=[t_save;t];

end

Dxx=processing_Dxx(Dxx); % Only the distinct columns left

% K=zeros(un,xn); % Initial stabilizing feedback gain matrix

P_old=zeros(xn);P=eye(xn)*10; % Initialize the previous cost matrix

it=0; % Counter for iterations

p_save=[]; % Track the cost matrices in all the iterations

k_save=[]; % Track the feedback gain matrix in each iterations

[K0,P0]=lqr(A,B,Q,R) % Calculate the ideal solution for comparion purpose

k_save=[norm(K-K0)];

while norm(P-P_old)>1e-10 & it<16 % Stopping criterion for learning

it=it+1 % Update and display the # of iters
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P_old=P; % Update the previous cost matrix

QK=Q+K’*R*K; % Update the Qk matrix

X2=XX*kron(eye(xn),K’); %

X1=[Dxx,-X2-XU]; % Left-hand side of the key equation

Y=-XX*QK(:); % Right-hand side of the key equation

pp=X1\Y; % Solve the equations in the LS sense

P=reshape_p(pp); % Reconstruct the symmetric matrix

p_save=[p_save,norm(P-P0)]; % Keep track of the cost matrix

BPv=pp(end-(xn*un-1):end);

K=inv(R)*reshape(BPv,un,xn)/2 % Get the improved gain matrix

k_save=[k_save,norm(K-K0)]; % Keep track of the control gains

end

% Plot the trajectories

figure(1)

plot([0:length(p_save)-1],p_save,’o’,[0:length(p_save)-1],p_save)

axis([-0.5,it-.5,-5,15])

legend(’||P_k-P^*||’)

xlabel(’Number of iterations’)

figure(2)

plot([0:length(k_save)-1],k_save,’^’,[0:length(k_save)-1],k_save)

axis([-0.5,it+0.5,-.5,2])

legend(’||K_k-K^*||’)

xlabel(’Number of iterations’)

% Post-learning simulation

[tt,xx]=ode23(@mysys,[t(end) 200],X(end,:)’);

% Keep track of the post-learning trajectories

t_final=[t_save;tt];

x_final=[x_save;xx];

figure(3)

plot(t_final,x_final(:,1:6),’Linewidth’,2)

axis([0,10,-100,200])

legend(’x_1’,’x_2’,’x_3’,’x_4’,’x_5’,’x_6’)

xlabel(’Time (sec)’)

figure(4)

plot(t_final,sqrt(sum(x_final(:,1:6).^2,2)),’Linewidth’,2)

axis([0,200,-50,200])
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legend(’||x||’)

xlabel(’Time (sec)’)

figure(5)

plot(t_final,3.6*x_final(:,1),’k-.’, ...

t_final, x_final(:,6),’-’,’Linewidth’,2)

axis([0,10,-80,50])

legend(’y_1 (MAF)’,’y_2 (MAP)’)

xlabel(’Time (sec)’)

% The following nested function gives the dynamics of the sytem. Also,

% integraters are included for the purpose of data collection.

function dX=mysys(t,X)

%global A B xn un i1 i2 K flag

x=X(1:xn);

if t>=2; % See if learning is stopped

flag=0;

end

if flag==1

u=zeros(un,1);

for i=i1

u(1)=u(1)+sin(i*t)/length(i1); % constructing the

% exploration noise

end

for i=i2

u(2)=u(2)+sin(i*t)/length(i2);

end

u=10000*u;

else

u=-K*x;

end

dx=A*x+B*u;

dxx=kron(x’,x’)’;

dux=kron(x’,u’)’;

dX=[dx;dxx;dux];

end

% This nested function reconstruct the P matrix from its distinct elements

function P=reshape_p(p)

P=zeros(xn);

ij=0;

for i=1:xn
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for j=1:i

ij=ij+1;

P(i,j)=p(ij);

P(j,i)=P(i,j);

end

end

end

% The following nested function removes the repeated columns from Dxx

function Dxx=processing_Dxx(Dxx)

ij=[]; ii=[];

for i=1:xn

ii=[ii (i-1)*xn+i];

end

for i=1:xn-1

for j=i+1:xn

ij=[ij (i-1)*xn+j];

end

end

Dxx(:,ii)=Dxx(:,ii)/2;

Dxx(:,ij)=[];

Dxx=Dxx*2;

end

end
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